|
| 1 | +# GreaseLM: Graph REASoning Enhanced Language Models |
| 2 | + |
| 3 | +This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models". |
| 4 | + |
| 5 | +<p align="center"> |
| 6 | + <img src="./figs/greaselm.png" width="600" title="GreaseLM model architecture" alt=""> |
| 7 | +</p> |
| 8 | + |
| 9 | +## Usage |
| 10 | +### 1. Dependencies |
| 11 | + |
| 12 | +- [Python](<https://www.python.org/>) == 3.8 |
| 13 | +- [PyTorch](<https://pytorch.org/get-started/locally/>) == 1.8.0 |
| 14 | +- [transformers](<https://github.com/huggingface/transformers/tree/v3.4.0>) == 3.4.0 |
| 15 | +- [torch-geometric](https://pytorch-geometric.readthedocs.io/) == 1.7.0 |
| 16 | + |
| 17 | +Run the following commands to create a conda environment (assuming CUDA 10.1): |
| 18 | +```bash |
| 19 | +conda create -y -n greaselm python=3.8 |
| 20 | +conda activate greaselm |
| 21 | +pip install numpy==1.18.3 tqdm |
| 22 | +pip install torch==1.8.0+cu101 torchvision -f https://download.pytorch.org/whl/torch_stable.html |
| 23 | +pip install transformers==3.4.0 nltk spacy |
| 24 | +pip install wandb |
| 25 | +conda install -y -c conda-forge tensorboardx |
| 26 | +conda install -y -c conda-forge tensorboard |
| 27 | + |
| 28 | +# for torch-geometric |
| 29 | +pip install torch-scatter==2.0.7 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html |
| 30 | +pip install torch-cluster==1.5.9 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html |
| 31 | +pip install torch-sparse==0.6.9 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html |
| 32 | +pip install torch-spline-conv==1.2.1 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html |
| 33 | +pip install torch-geometric==1.7.0 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html |
| 34 | +``` |
| 35 | + |
| 36 | + |
| 37 | +### 2. Download data |
| 38 | + |
| 39 | +Download all the raw data -- ConceptNet, CommonsenseQA, OpenBookQA -- by |
| 40 | +``` |
| 41 | +./download_raw_data.sh |
| 42 | +``` |
| 43 | + |
| 44 | +You can preprocess the raw data by running |
| 45 | +``` |
| 46 | +CUDA_VISIBLE_DEVICES=0 python preprocess.py -p <num_processes> |
| 47 | +``` |
| 48 | +You can specify the GPU you want to use in the beginning of the command `CUDA_VISIBLE_DEVICES=...`. The script will: |
| 49 | +* Setup ConceptNet (e.g., extract English relations from ConceptNet, merge the original 42 relation types into 17 types) |
| 50 | +* Convert the QA datasets into .jsonl files (e.g., stored in `data/csqa/statement/`) |
| 51 | +* Identify all mentioned concepts in the questions and answers |
| 52 | +* Extract subgraphs for each q-a pair |
| 53 | + |
| 54 | +**TL;DR**. The preprocessing may take long; for your convenience, you can download all the processed data [here](https://drive.google.com/drive/folders/1T6B4nou5P3u-6jr0z6e3IkitO8fNVM6f?usp=sharing) into the top-level directory of this repo and run |
| 55 | +``` |
| 56 | +unzip data_preprocessed.zip |
| 57 | +``` |
| 58 | + |
| 59 | +The resulting file structure should look like this: |
| 60 | + |
| 61 | +```plain |
| 62 | +. |
| 63 | +├── README.md |
| 64 | +└── data/ |
| 65 | + ├── cpnet/ (preprocessed ConceptNet) |
| 66 | + └── csqa/ |
| 67 | + ├── train_rand_split.jsonl |
| 68 | + ├── dev_rand_split.jsonl |
| 69 | + ├── test_rand_split_no_answers.jsonl |
| 70 | + ├── statement/ (converted statements) |
| 71 | + ├── grounded/ (grounded entities) |
| 72 | + ├── graphs/ (extracted subgraphs) |
| 73 | + ├── ... |
| 74 | +``` |
| 75 | + |
| 76 | +### 3. Training GreaseLM |
| 77 | +To train GreaseLM on CommonsenseQA, run |
| 78 | +``` |
| 79 | +CUDA_VISIBLE_DEVICES=0 ./run_greaselm.sh csqa --data_dir data/ |
| 80 | +``` |
| 81 | +You can specify up to 2 GPUs you want to use in the beginning of the command `CUDA_VISIBLE_DEVICES=...`. |
| 82 | + |
| 83 | +Similarly, to train GreaseLM on OpenbookQA, run |
| 84 | +``` |
| 85 | +CUDA_VISIBLE_DEVICES=0 ./run_greaselm.sh obqa --data_dir data/ |
| 86 | +``` |
| 87 | + |
| 88 | +### 4. Pretrained model checkpoints |
| 89 | +You can download a pretrained GreaseLM model on CommonsenseQA [here](https://drive.google.com/file/d/1QPwLZFA6AQ-pFfDR6TWLdBAvm3c_HOUr/view?usp=sharing), which achieves an IH-dev acc. of `79.0` and an IH-test acc. of `74.0`. |
| 90 | + |
| 91 | +You can also download a pretrained GreaseLM model on OpenbookQA [here](https://drive.google.com/file/d/1-QqyiQuU9xlN20vwfIaqYQ_uJMP8d7Pv/view?usp=sharing), which achieves an test acc. of `84.8`. |
| 92 | + |
| 93 | +### 5. Evaluating a pretrained model checkpoint |
| 94 | +To evaluate a pretrained GreaseLM model checkpoint on CommonsenseQA, run |
| 95 | +``` |
| 96 | +CUDA_VISIBLE_DEVICES=0 ./eval_greaselm.sh csqa --data_dir data/ --load_model_path /path/to/checkpoint |
| 97 | +``` |
| 98 | +Again you can specify up to 2 GPUs you want to use in the beginning of the command `CUDA_VISIBLE_DEVICES=...`. |
| 99 | + |
| 100 | +SimilarlyTo evaluate a pretrained GreaseLM model checkpoint on OpenbookQA, run |
| 101 | +``` |
| 102 | +CUDA_VISIBLE_DEVICES=0 ./eval_greaselm.sh obqa --data_dir data/ --load_model_path /path/to/checkpoint |
| 103 | +``` |
| 104 | + |
| 105 | +### 6. Use your own dataset |
| 106 | +- Convert your dataset to `{train,dev,test}.statement.jsonl` in .jsonl format (see `data/csqa/statement/train.statement.jsonl`) |
| 107 | +- Create a directory in `data/{yourdataset}/` to store the .jsonl files |
| 108 | +- Modify `preprocess.py` and perform subgraph extraction for your data |
| 109 | +- Modify `utils/parser_utils.py` to support your own dataset |
| 110 | + |
| 111 | +## Acknowledgment |
| 112 | +This repo is built upon the following work: |
| 113 | +``` |
| 114 | +QA-GNN: Question Answering using Language Models and Knowledge Graphs |
| 115 | +https://github.com/michiyasunaga/qagnn |
| 116 | +``` |
| 117 | +Many thanks to the authors and developers! |
0 commit comments