-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder_demo.py
382 lines (327 loc) · 13.5 KB
/
decoder_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import json
from pathlib import Path
from typing import Literal, Optional
import numpy as np
import numpy.typing as npt
from matplotlib import pyplot as plt
LOCAL_DATA_DIRECTORY_ROOT = Path("downloaded_data")
def read_file(remote_path: str | Path) -> npt.NDArray | list:
extension = Path(remote_path).suffix
if extension == ".npy":
file = np.load(remote_path)
elif extension == ".json":
with open(remote_path, "r") as file_:
file = json.load(file_)
else:
raise ValueError(f"Unknown file extension {extension}")
return file
def sift_and_group_quadratures(
batch_dir: str | Path, use_decoder_decision: bool
) -> dict[str, npt.NDArray]:
"""Starting from a time array of quadratures, acquired under active decoding,
performs the following steps:
- keep quadratures acquired in the decoder decision time bin (and omit
the others)
- discard time bins in which pairs 2 or 3 included at least
one heralded state
- group remaining quadratures according to either
- decoding result: "keep" or "cut", if use_decoder_decision=True
- measurement basis: p (X-measurement) or q (Z-measurement),
if use_decoder_decision=False
Args:
batch_dir: directory of the acquisition batch
use_decoder_decision: whether to separate the acquired quadratures
into "keep" or "cut" decisions of the decoder (as opposed to
separating them by the measured LO phase setting)
Returns:
dictionary of sifted quadratures, grouped by
- either decoder decision (if use_decoder_decision is True)
- or measurement basis (if use_decoder_decision is False)
"""
# the number or time bins in one decoding cycle
decoder_cycles = 5
# index of a decoding cycle's decision time bin (i.e. the time bin in which
# the adaptive measurement takes place)
decision_time_bin = 4
# obtain quadrature array, of shape (12, total time bins)
quadratures = read_file(
remote_path=LOCAL_DATA_DIRECTORY_ROOT / batch_dir / "quadratures.npy"
)[:, decision_time_bin::decoder_cycles]
# the QPU switch settings corresponding to the batch's decision time bins
if not use_decoder_decision:
# use the acquired switch setting of QPU 2 (M_0) to inform when
# entanglement was kept or cut; just focus on the decision time bins
switch_settings = read_file(
remote_path=LOCAL_DATA_DIRECTORY_ROOT
/ batch_dir
/ "switch_settings_qpu_2.npy"
)[decision_time_bin::decoder_cycles]
# the integer values in switch_settings correspond to the following
# measurement bases:
# 0 -- Z-measurement || cut || q || 0 deg || (keep_or_cut=False)
# 3 -- X-measurement || keep || p || 90 deg || (keep_or_cut=True)
# (numbers 1 and 2 are reserved for additional measurement angles that
# were, however, not used in this experiment)
keep_or_cut = np.array(switch_settings) == 3
else:
# use decoder decisions to inform when entanglement was kept
# or cut. decoder_bits can be:
# - -1: non-decision time bin (so time bins 0--3 before the decision),
# - 0: cut,
# - 1: keep,
# - -2: timeout -- no recovery found in 5 clock cycles (cut)
decisions = read_file(
remote_path=LOCAL_DATA_DIRECTORY_ROOT / batch_dir / "decisions.npy"
)
# a decoder decision in time bin N will only affect the adaptive
# measurement in time bin N+1; so in order to later compare decisions
# and measurements we shift the array for one clock cycle
decisions = np.roll(decisions, 1)
# just focus on the decision time bins
keep_or_cut = decisions[decision_time_bin::decoder_cycles]
# as a sanity check, make sure there is no -1 left in the keep_or_cut
# values (a decoding cycle has five time bins: four decoding bins
# followed by a decision bin; the value -1 is only allowed in decoding
# bins which, after the above sifting, should be discarded)
if -1 in keep_or_cut:
raise ValueError(
"Unexpected value -1 in keep_or_cut. Only values 0, 1, and -2 are valid in a decision time bin."
)
# boolean arrays indicating "keep" and "cut" decisions as well as timeout
# events (also corresponding to "cut")
keep_event = keep_or_cut == 1
cut_event = keep_or_cut == 0
timeout_event = keep_or_cut == -2
# load the switch settings of multiplexers 2 and 3
switch_settings_mux_2_top = read_file(
remote_path=LOCAL_DATA_DIRECTORY_ROOT
/ batch_dir
/ "switch_settings_mux_2_top.npy"
)
switch_settings_mux_2_bot = read_file(
remote_path=LOCAL_DATA_DIRECTORY_ROOT
/ batch_dir
/ "switch_settings_mux_2_bot.npy"
)
switch_settings_mux_3_top = read_file(
remote_path=LOCAL_DATA_DIRECTORY_ROOT
/ batch_dir
/ "switch_settings_mux_3_top.npy"
)
switch_settings_mux_3_bot = read_file(
remote_path=LOCAL_DATA_DIRECTORY_ROOT
/ batch_dir
/ "switch_settings_mux_3_bot.npy"
)
# just focus on the decision time bins
switch_settings_mux_2_top = switch_settings_mux_2_top[
decision_time_bin::decoder_cycles
]
switch_settings_mux_2_bot = switch_settings_mux_2_bot[
decision_time_bin::decoder_cycles
]
switch_settings_mux_3_top = switch_settings_mux_3_top[
decision_time_bin::decoder_cycles
]
switch_settings_mux_3_bot = switch_settings_mux_3_bot[
decision_time_bin::decoder_cycles
]
# the elements in these arrays correspond to the index of the mux input
# routed to the entangled-pair generation at each individual time bin; input
# 0 always corresponds to a squeezed-light mode, inputs 1--3 correspond to a
# heralded state; therefore, if the sum of all four inputs is zero, no
# heralded state is involved in any of the four multiplexers at that
# particular time bin
switch_settings_sum = np.sum(
[
switch_settings_mux_2_top,
switch_settings_mux_2_bot,
switch_settings_mux_3_top,
switch_settings_mux_3_bot,
],
axis=0,
)
# boolean array indicating events of all-gaussian pairs
no_heralded_event = switch_settings_sum == 0
# finally, group quadratures acquired at the decision time bins by
# measurement basis, discarding decision time bins that involve non-gaussian
# states in pairs 2 or 3
quadratures_p = quadratures[:, keep_event * no_heralded_event]
quadratures_q = quadratures[:, cut_event * no_heralded_event]
quadratures_timeout = quadratures[:, timeout_event * no_heralded_event]
return {
"quadratures_p": quadratures_p,
"quadratures_q": quadratures_q,
"quadratures_timeout": quadratures_timeout,
}
def covariance_matrix(quadratures: npt.NDArray) -> npt.NDArray:
"""Computes a covariance matrix of quadrature values, sorted by macronode.
Args:
quadratures: quadratures of shape (12, time bins)
Returns: covariance matrix
"""
def array_to_qpu_dict(arr: npt.NDArray) -> dict:
"""Reorganizes a nested array of length 12 (number of FTB spatial modes) into a
dict with one key per QPU.
Args:
arr: array of raw data or quadratures per spatial mode
Returns: dict of raw data or quadratures, organized by QPU
"""
return {
"qpu_0": np.array([arr[0], arr[2]]),
"qpu_1": np.array([arr[1], arr[3], arr[4]]),
"qpu_2": np.array([arr[5], arr[6]]),
"qpu_3": np.array([arr[10], arr[8], arr[7]]),
"qpu_4": np.array([arr[11], arr[9]]),
}
# group the spatial modes by QPU (macronode)
qpu_dict = array_to_qpu_dict(quadratures)
x_2 = np.array(
[
qpu_dict[f"qpu_{i}"][j]
for i in range(5)
for j in range(2 if i % 2 == 0 else 3)
]
)
return np.cov(x_2)
def get_batch_cov(quadratures_dict: dict[str, npt.NDArray]) -> dict[str, npt.NDArray]:
"""Computes covariance matrices from quadrature arrays:
Args:
quadratures_dict: dict of quadratures with keys quadratures_p
and quadratures_q, each one corresponding to an array of shape
(12, shots)
Returns:
dict of covariance matrices with keys cov_p and cov_p, each one
corresponding to an array of shape (24, 24)
"""
return {
"cov_p": covariance_matrix(quadratures_dict["quadratures_p"]),
"cov_q": covariance_matrix(quadratures_dict["quadratures_q"]),
}
def get_covs(
type_: Literal["signal", "random", "vacuum"],
use_decoder_decision: bool,
start_batch: int = 0,
stop_batch: Optional[int] = None,
) -> dict[str, npt.NDArray]:
"""Processes a sequence of decoding jobs and returns a dictionary with covariance
matrix per measurement setting and job.
Args:
type_: specifies the type of measurement sequence to be processed:
regular decoding experiment ("signal"), control experiment
("random) or vacuum measurement ("vacuum")
use_decoder_decision: whether to separate the acquired quadratures
into "keep" or "cut" decisions of the decoder (as opposed to
separating them by the measured LO phase setting)
start_batch: first batch of the measurement sequence to be processed;
defaults to zero
stop_batch: last batch of the measurement sequence to be processed;
defaults to the total available number of batches
Returns:
dictionary with covariance matrix per measurement setting and job
"""
if stop_batch is None:
if type_ == "signal":
# a total of 72 batches were acquired in the signal acquisition
stop_batch = 73
elif type_ == "vacuum":
# a total of 62 batches were acquired in the vacuum acquisition
stop_batch = 63
elif type_ == "random":
# a total of 73 batches were acquired in the random acquisition
stop_batch = 74
else:
raise ValueError
num_batches = stop_batch - start_batch
# pre-allocate arrays of covariance matrices
all_covs = {
"cov_p": np.full((num_batches, 12, 12), np.nan),
"cov_q": np.full((num_batches, 12, 12), np.nan),
}
# iterate through the individual jobs of the measurement sequence
for i in range(start_batch, stop_batch):
batch_dir = Path(f"decoder_demo/{type_}/batch_{i}")
quadratures_dict = sift_and_group_quadratures(
batch_dir=batch_dir, use_decoder_decision=use_decoder_decision
)
covs = get_batch_cov(quadratures_dict=quadratures_dict)
all_covs["cov_p"][i, ...] = covs["cov_p"]
all_covs["cov_q"][i, ...] = covs["cov_q"]
return {
"cov_p": np.nanmean(all_covs["cov_p"], axis=0),
"cov_q": np.nanmean(all_covs["cov_q"], axis=0),
}
def plot_covariance(
covariance: npt.NDArray,
range_: Optional[float] = None,
show_values: bool = True,
cmap: str = "RdBu_r",
file_name: Optional[Path] = None,
show_plot: bool = False,
) -> None:
"""Creates a colour plot of the quadrature covariance matrix.
Args:
covariance: array of shape (12, 12)
range_: the range of values shown in the colour plot (-range_ , range_)
show_values: whether to display the matrix values in the colour plot
cmap: matplotlib colour map
file_name: file path and name under which generated figure is saved
show_plot: whether to show the plot or close the figure instead
trace
"""
# plot width and height
width = 7
height = 5
fig, ax = plt.subplots(figsize=(width, height))
# the diagonal of the covariance matrix just shows the single-mode variance
# of each mode; it is usually much larger than any off-diagonal elements and
# therefore dominates any colour plot; in order to enhance visibility of the
# inter-mode correlations, we set the diagonal to zero
covariance = np.copy(covariance)
np.fill_diagonal(covariance, 0.0)
if range_ is None:
range_ = np.nanmax(np.abs(covariance))
cov_x_plot = ax.pcolor(
covariance,
vmin=-range_,
vmax=range_,
cmap=cmap,
)
ax.invert_yaxis()
ax.set_aspect("equal", adjustable="box")
separation_a_0_b_0 = 2
separation_b_0_c = 5
separation_c_b_1 = 7
separation_b_1_a_1 = 10
ax.hlines(
[separation_a_0_b_0, separation_b_0_c, separation_c_b_1, separation_b_1_a_1],
0,
12,
linestyle="solid",
linewidth=0.5,
color="grey",
)
ax.vlines(
[separation_a_0_b_0, separation_b_0_c, separation_c_b_1, separation_b_1_a_1],
0,
12,
linestyle="solid",
linewidth=0.5,
color="grey",
)
ticks = np.array([1, 3.5, 6, 8.5, 11])
labels = [r"$M_{3}$", r"$M_{1}$", r"$M_{0}$", r"$M_{2}$", r"$M_{4}$"]
ax.set_xticks(ticks, labels, fontsize=15)
ax.set_yticks(ticks, labels, fontsize=15)
if show_values:
for (j, i), value in np.ndenumerate(covariance):
plt.text(
i + 0.5, j + 0.5, f"{value:.3f}", ha="center", va="center", fontsize=6
)
color_bar = fig.colorbar(cov_x_plot, ax=ax)
color_bar.ax.tick_params(labelsize=15)
if file_name is not None:
fig.savefig(file_name)
plt.show()
if not show_plot:
plt.close(fig)