-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
304 lines (238 loc) · 10.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""
Title: Early Fault-Tolerant Quantum Algorithms in Practice: Application to Ground-State Energy Est.
Authors: O. Kiss, U. Azad, B. Requena, A. Roggero, D. Wakeham, J. M. Arrazola
Paper: arXiv:2405.03754
Year: 2024
Description: This module contains functions to perform the bulk of the presented LT-based algorithm.
"""
import time
import itertools
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from algorithms.utils import (
compute_d,
optimal_sample,
find_first_jump_left,
find_first_jump_right,
find_large_variance,
filter_,
)
from algorithms.Fk import get_F, get_beta
def main(number, initial_state, model, step):
"""Main function to perform energy calculations and analysis.
Args:
number (int): Identifier for the results directory.
initial_state (int): Initial state identifier to load the initial state.
model (int): Model identifier used to load specific energy data.
step (int): Step value used in file naming for saving results.
"""
initial_state += model
energies_dmrg = np.load(f"data/energies_dmrg_qc{model}.npy")
print(energies_dmrg)
##################################
#### algorithm configuration ###
try:
moments = np.load(f"results/{number}/moments_{initial_state}_{step}.npy", allow_pickle=True)
except FileNotFoundError:
print(f"File results/{number}/moments_{initial_state}_{step}.npy not found.")
return
tau = np.load(f"results/{number}/tau.npy")
print(tau)
delta = abs(1 / 10**2)
epsilon = 0.01
theta = 0.01 # 1%
# eta unknown
eta = 10**-1
beta = get_beta(epsilon, delta)
print(beta)
# beta = max(beta, 100000)
d = compute_d(tau, epsilon)
d = len(moments[0]) - 1
d = int(d)
print(eta, tau, epsilon, delta, beta, d)
########
D_space = [int(d / 2), int(d / 4), int(d / 10), int(d / 20)][:1]
print(D_space)
sample_space = [0, 100, 1000, 10000]
#######
np.save(f"results/{number}/Depths_{initial_state}_{step}.npy", D_space)
np.save(f"results/{number}/Samples_{initial_state}_{step}.npy", sample_space)
energy_guess_rpt = []
energy_guess_var = []
for ddd, d in enumerate(D_space):
if d > len(moments[0]):
continue
energy_guess_rpt.append([])
energy_guess_var.append([])
K = np.arange(0, d + 1)
Fk = [get_F(k, beta, d) for k in K]
Fk = np.array(Fk) # get the coefficients
norm_Fk = np.sum(np.absolute(Fk))
M_optimal = optimal_sample(np.sum(np.absolute(Fk)), delta, eta, theta)
print(f"d = {d}, M optimal = {M_optimal}")
bound = (
lambda d: 2.07
/ (2 * np.pi)
* (2 * np.log2(2) + np.log(d + 0.5) + 0.577 + 0.5 / (d + 0.5))
)
for _i, N in enumerate(tqdm(sample_space)):
print(N)
energy_guess_rpt[-1].append([])
energy_guess_var[-1].append([])
for run in range(10): # do statistics over sampling
norm_Fk = np.sum(np.absolute(Fk))
# v = norm_Fk**2/N
probs_Fk = (np.absolute(Fk) / norm_Fk).real
if N == 0:
# exact signal
ks = np.arange(0, d + 1)
coeffs = np.sqrt(Fk[ks].real ** 2 + Fk[ks].imag ** 2)
shots = [0]
else:
# sampled signal
np.random.seed(12 * run + 48)
sample_k = list(
np.random.choice(np.arange(d + 1), size=N, p=probs_Fk, replace=True)
) # sample
sample_k.sort()
elements = np.array(
[[g[0], len(list(g[1]))] for g in itertools.groupby(sample_k)]
)
ks = elements[:, 0]
shots = elements[:, 1]
coeffs = list(norm_Fk / N * np.ones_like(ks))
### time series ####
# e^{-iH tau k}
prob_real = (moments[0, :] + 1) / 2
prob_imag = (moments[1, :] + 1) / 2
gk_real_exacts = moments[0, :]
gk_imag_exacts = moments[1, :]
window = np.ones((d + 1))
if np.sum(shots) == 0:
gk_real = gk_real_exacts[ks]
gk_imag = gk_imag_exacts[ks]
else:
pseudo_prob = np.array(
[
np.sum(2 * np.random.binomial(1, p=prob_real[ks[i]], size=shots[i]) - 1)
for i in range(len(shots))
]
)
gk_real = pseudo_prob
pseudo_prob = np.array(
[
np.sum(2 * np.random.binomial(1, p=prob_imag[ks[i]], size=shots[i]) - 1)
for i in range(len(shots))
]
)
gk_imag = pseudo_prob
### ACDF ###
gap = min(0.015, abs(energies_dmrg[-1] - energies_dmrg[0])) / tau
energies = np.linspace(
tau * (energies_dmrg[-1] - gap), tau * (energies_dmrg[0] + 1 * gap), 10000
)
energies = np.linspace(-np.pi / 2, np.pi / 2, 10000)
energies = np.linspace(-3 * tau, 1 * tau, 10000)
J = 2 * np.array(ks) + 1
if len(J) < 10**7 or True:
out = np.outer(J, energies)
__ = time.time()
acdf = 0.5 + 2 * np.array(
np.einsum("i, ij", coeffs * gk_real, np.sin(out))
+ np.einsum("i, ij", coeffs * gk_imag, np.cos(out))
)
else:
acdf = 0.5 * np.ones_like(energies)
for eidx, energy in enumerate(energies):
acdf[eidx] += 2 * np.dot(coeffs * gk_real, np.sin(J * energy))
acdf[eidx] += 2 * np.dot(coeffs * gk_imag, np.cos(J * energy))
plt.figure()
plt.plot(energies, acdf, label="ACDF")
bonds = [2, 5, 10, 20, 50, 100, 200]
for bd, e_ in enumerate(energies_dmrg):
plt.vlines(
e_ * tau, 0, 1, color="k", label=r"DMRG$ (\chi={})$".format(bonds[bd])
)
np.save(
f"results/{number}/acdf_{initial_state}_{step}_{d}_{N}_{run}.npy",
acdf,
)
np.save(
f"results/{number}/energies_{initial_state}_{step}_{d}_{N}_{run}.npy",
energies,
)
final_guess = []
if False:
guess_arg_0_left = find_first_jump_left(acdf, alpha=0.1)
guess_arg_0_right = find_first_jump_right(acdf, alpha=0.1)
guess_arg_0 = guess_arg_0_left
v = np.std(acdf[:guess_arg_0])
guess_arg_1 = find_large_variance(acdf, v, s=3)
guess_arg_2 = filter_(acdf)
guess_arg = [guess_arg_0, guess_arg_1, guess_arg_0]
guess = []
final_guess = []
for guess_arg_value in guess_arg:
if guess_arg_value == len(energies):
guess_arg_value -= 1
guess = energies[guess_arg_value]
new_energies = np.linspace(guess - 1 * delta, guess + 1 * delta, 1000)
new_energies = np.linspace(
tau * (energies_dmrg[-1] - 0.08 * gap),
tau * (energies_dmrg[-1] + 0.4 * gap),
4000,
)
new_energies = np.linspace(-5 * tau, -3.5 * tau, 4000)
out = np.outer(J, new_energies)
grad_acdf = np.array(
np.einsum("i, ij", J * gk_real, np.cos(out))
- np.einsum("i, ij", J * gk_imag, np.sin(out))
)
grad_acdf = grad_acdf / abs(max(grad_acdf))
final_guess.append(new_energies[np.argmax(grad_acdf)])
break
else:
trial = np.array(
[
-1.935093509350935,
-0.9057105710571058,
-1.8055605560556056,
-1.812121212121212,
]
).reshape(1, -1)
new_energies = np.linspace(
tau * (energies_dmrg[-1] - 0.05 * gap),
tau * (energies_dmrg[-1] + 0.4 * gap),
4000,
)
new_energies = np.linspace(
(trial[ddd, _i] - 0.1) * tau, (trial[ddd, _i] + 0.1) * tau, 4000
)
out = np.outer(J, new_energies)
grad_acdf = np.array(
np.einsum("i, ij", J * gk_real, np.cos(out))
- np.einsum("i, ij", J * gk_imag, np.sin(out))
)
grad_acdf = grad_acdf / abs(max(grad_acdf))
final_guess.append(new_energies[np.argmax(grad_acdf)])
plt.plot(new_energies, grad_acdf, ".", color="red", label="gradient", markersize=1)
plt.legend()
plt.savefig(f"results/{number}/acdf_{initial_state}_{step}_{d}_{N}_{run}.png")
np.save(
f"results/{number}/grad_acdf_{initial_state}_{step}_{d}_{N}_{run}.npy",
grad_acdf,
)
np.save(
f"results/{number}/grad_energies_{initial_state}_{step}_{d}_{N}_{_i}.npy",
new_energies,
)
np.save(f"results/{number}/guess_energies_rpt_{initial_state}_{step}.npy", new_energies)
if __name__ == "__main__":
model = "_6_-1_1"
states = ["dmrg_0"]
number = 32
nbr_steps = [0, 10]
for Is in states:
for step in nbr_steps:
main(number, Is, model, step)