-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.py
75 lines (51 loc) · 2.75 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# coding: utf-8
"""
常用变量 列表
"""
# 当前可识别病理类型 length = 12
import os
PATHOLOGY_TYPE_CLASSES = [ "HSIL", "HSIL_B", "HSIL_M", "HSIL_S", "ASCH", "LSIL", "LSIL_E", "LSIL_F", "ASCUS", "SCC", "SCC_G", "SCC_R", "EC", "AGC_A", "AGC_B", "AGC", "FUNGI", "TRI", "CC", "ACTINO", "VIRUS", "MC", "SC", "RC", "GEC", ]
# 病理类型对应颜色 length = 12
PATHOLOGY_TYPE_COLORS = [ "#aa0000", "#aa0000", "#aa0000", "#aa0000", "#aa007f", "#005500", "#005500", "#005500", "#00557f", "#0055ff", "#0055ff", "#0055ff", "#aa55ff", "#ff5500", "#ff5500", "#ff5500", "#00aa00", "#00aa7f", "#00aaff", "#55aa00", "#55aa7f", "#000000", "#aa00ff", "#ff0000", "#aa5500", ]
# 统一归为 AGC 类别的病理图像类别
AGC_CLASSES = ['AGC1', 'AGC2', 'AGC3', 'ADC']
# 病理类别=>对应颜色
TYPE_to_COLOR_DICT = dict(zip(PATHOLOGY_TYPE_CLASSES, PATHOLOGY_TYPE_COLORS))
# 颜色=>对应病理类别
COLOR_to_TYPE_DICT = dict(zip(PATHOLOGY_TYPE_COLORS, PATHOLOGY_TYPE_CLASSES))
# 数据存储根目录
DATA_RESOURCE_ROOT_PATH = os.path.join(os.environ['HOME'] + "/Development/DATA/NEW_REQUIREMENT_2X/")
# DATA_RESOURCE_ROOT_PATH = os.path.join("C:/" + "/Development/DATA/TRAIN_DATA")
# 病理图像本地资源库路径
TIFF_IMAGE_RESOURCE_PATH = os.path.join(os.environ['HOME'], "/home/cnn/Development/DATA/TRAIN_DATA/TIFFS/")
# 中间数据文件生成目录
METADATA_FILE_PATH = os.path.join(DATA_RESOURCE_ROOT_PATH, "META")
# 审阅后 xml 数据保存目录
CHECKED_CELL_XML_SAVE_PATH = os.path.join(DATA_RESOURCE_ROOT_PATH, "XMLS_CHECKED")
# 筛选后 xml 数据保存目录
SELECTED_CELL_XML_SAVE_PATH = os.path.join(DATA_RESOURCE_ROOT_PATH, "XMLS_SELECTED")
# 训练细胞图像数据保存目录
CELL_IMAGES_SAVE_PATH = os.path.join(DATA_RESOURCE_ROOT_PATH, "CELLS")
# 远程路径标识符
REMOTE_PATH_FLAG = "smb-share:server="
# 最低重叠率
ACCEPTED_OVERLAPPED_RATIO = 0.5
# 文件打开失败记录存储
TIFF_OPEN_FAIL_RECORDS = 'TIFF_OPEN_FAIL_RECORDS.txt'
# 细胞计数文件名称
CELL_COUNT_FILE_NAME = '[NOTICE]CELL_COUNT_BY_CLASS[DO NOT EDIT].txt'
# 默认写入 Labelme 配置文件的 Image 大小
LABELME_DEFAULT_IMAGE_SIZE = 608
# 默认输出的 labelme xml 文件输出目录
LABELME_DEFAULT_XML_OUTPUT_PATH = os.path.join(DATA_RESOURCE_ROOT_PATH, "Labelme", 'xmls')
# 最大可用 CPU 数量
MAX_CPU_WORKERS = 20
if __name__ == '__main__':
lst01 = dict(zip(PATHOLOGY_TYPE_CLASSES, PATHOLOGY_TYPE_COLORS))
lst02 = dict(zip(PATHOLOGY_TYPE_COLORS, PATHOLOGY_TYPE_CLASSES))
print(lst01 == TYPE_to_COLOR_DICT)
print(lst02 == COLOR_to_TYPE_DICT)
print(lst01)
print(TYPE_to_COLOR_DICT)
print(lst02)
print(COLOR_to_TYPE_DICT)