-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
153 lines (138 loc) · 6.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -*- coding: utf-8 -*-
# @Time : 2019/3/19 16:21
# @Author : Alan
# @Email : [email protected]
# @File : model.py
# @Software: PyCharm
import tensorflow as tf
from model_utils import feature2cos_sim
class SiameseQACNN(object):
def __init__(self, config):
self.ques_len = config.ques_length
self.ans_len = config.ans_length
self.hidden_size = config.hidden_size
self.output_size = config.output_size
self.pos_weight = config.pos_weight
self.learning_rate = config.learning_rate
self.optimizer = config.optimizer
self.l2_lambda = config.l2_lambda
self.clip_value = config.clip_value
self.embeddings = config.embeddings
self.window_sizes = config.window_sizes
self.n_filters = config.n_filters
self.margin = config.margin
self._placeholder_init_pointwise()
self.q_a_cosine, self.q_aneg_cosine = self._build(self.embeddings)
# 损失和精确度
self.total_loss, self.accu = self._add_loss_op(self.q_a_cosine, self.q_aneg_cosine, self.l2_lambda)
# 训练节点
self.train_op = self._add_train_op(self.total_loss)
def _placeholder_init_pointwise(self):
self._ques = tf.placeholder(tf.int32, [None, self.ques_len], name='ques_point')
self._ans = tf.placeholder(tf.int32, [None, self.ans_len], name='ans_point')
self._ans_neg = tf.placeholder(tf.int32, [None, self.ans_len], name='ans_point')
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
self.batch_size, self.list_size = tf.shape(self._ans)[0], tf.shape(self._ans)[1]
def _HL_layer(self, bottom, n_weight, name):
"""
全连接层
"""
assert len(bottom.get_shape()) == 3
n_prev_weight = bottom.get_shape()[-1]
max_len = bottom.get_shape()[1]
initer = tf.truncated_normal_initializer(stddev=0.01)
W = tf.get_variable(name + 'W', dtype=tf.float32, shape=[n_prev_weight, n_weight],
initializer=tf.uniform_unit_scaling_initializer())
b = tf.get_variable(name + 'b', dtype=tf.float32,
initializer=tf.constant(0.1, shape=[n_weight], dtype=tf.float32))
bottom_2 = tf.reshape(bottom, [-1, n_prev_weight])
hl = tf.nn.bias_add(tf.matmul(bottom_2, W), b)
hl_tanh = tf.nn.tanh(hl)
HL = tf.reshape(hl_tanh, [-1, max_len, n_weight])
return HL
def fc_layer(self, bottom, n_weight, name):
"""
全连接层
"""
assert len(bottom.get_shape()) == 2
n_prev_weight = bottom.get_shape()[1]
initer = tf.truncated_normal_initializer(stddev=0.01)
W = tf.get_variable(name + 'W', dtype=tf.float32, shape=[n_prev_weight, n_weight], initializer=initer)
b = tf.get_variable(name + 'b', dtype=tf.float32,
initializer=tf.constant(0.01, shape=[n_weight], dtype=tf.float32))
fc = tf.nn.bias_add(tf.matmul(bottom, W), b)
return fc
def _network(self, x):
"""
核心网络
"""
fc1 = self.fc_layer(x, self.hidden_size, "fc1")
ac1 = tf.nn.relu(fc1)
fc2 = self.fc_layer(ac1, self.hidden_size, "fc2")
return fc2
def _cnn_layer(self, input):
"""
卷积层
"""
all = []
max_len = input.get_shape()[1]
for i, filter_size in enumerate(self.window_sizes):
with tf.variable_scope('filter{}'.format(filter_size)):
# 卷积
cnn_out = tf.layers.conv1d(input, self.n_filters, filter_size, padding='valid',
activation=tf.nn.relu, name='q_conv_' + str(i))
# 池化
pool_out = tf.reduce_max(cnn_out, axis=1, keepdims=True)
tanh_out = tf.nn.tanh(pool_out)
all.append(tanh_out)
cnn_outs = tf.concat(all, axis=-1)
dim = cnn_outs.get_shape()[-1]
cnn_outs = tf.reshape(cnn_outs, [-1, dim])
return cnn_outs
def _build(self, embeddings):
self.Embedding = tf.Variable(tf.to_float(embeddings), trainable=False, name='Embedding')
self.q_embed = tf.nn.dropout(tf.nn.embedding_lookup(self.Embedding, self._ques), keep_prob=self.dropout_keep_prob)
self.a_embed = tf.nn.dropout(tf.nn.embedding_lookup(self.Embedding, self._ans), keep_prob=self.dropout_keep_prob)
self.a_neg_embed = tf.nn.dropout(tf.nn.embedding_lookup(self.Embedding, self._ans_neg), keep_prob=self.dropout_keep_prob)
with tf.variable_scope('siamese') as scope:
# 计算隐藏和卷积层
hl_q = self._HL_layer(self.q_embed, self.hidden_size, 'HL_layer')
conv1_q = self._cnn_layer(hl_q)
scope.reuse_variables()
hl_a = self._HL_layer(self.a_embed, self.hidden_size, 'HL_layer')
hl_a_neg = self._HL_layer(self.a_neg_embed, self.hidden_size, 'HL_layer')
conv1_a = self._cnn_layer(hl_a)
conv1_a_neg = self._cnn_layer(hl_a_neg)
# 计算余弦相似度
# q_a_cosine = feature2cos_sim(tf.nn.l2_normalize(conv1_q, dim=1), tf.nn.l2_normalize(conv1_a, dim=1))
# q_aneg_cosine = feature2cos_sim(tf.nn.l2_normalize(conv1_q, dim=1), tf.nn.l2_normalize(conv1_a_neg, dim=1))
q_a_cosine = tf.reduce_sum(tf.multiply(tf.nn.l2_normalize(conv1_q, dim=1), tf.nn.l2_normalize(conv1_a, dim=1)), 1)
q_aneg_cosine = tf.reduce_sum(tf.multiply(tf.nn.l2_normalize(conv1_q, dim=1), tf.nn.l2_normalize(conv1_a_neg, dim=1)), 1)
return q_a_cosine, q_aneg_cosine
def _margin_loss(self, pos_sim, neg_sim):
original_loss = self.margin - pos_sim + neg_sim
l = tf.maximum(tf.zeros_like(original_loss), original_loss)
loss = tf.reduce_sum(l)
return loss, l
def _add_loss_op(self, p_sim, n_sim, l2_lambda=0.0001):
"""
损失节点
"""
loss, l = self._margin_loss(p_sim, n_sim)
accu = tf.reduce_mean(tf.cast(tf.equal(0., l), tf.float32))
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
l2_loss = sum(reg_losses) * l2_lambda
pairwise_loss = loss + l2_loss
tf.summary.scalar('pairwise_loss', pairwise_loss)
self.summary_op = tf.summary.merge_all()
return pairwise_loss, accu
def _add_train_op(self, loss):
"""
训练节点
"""
with tf.name_scope('train_op'):
# 记录训练步骤
self.global_step = tf.Variable(0, name='global_step', trainable=False)
opt = tf.train.AdamOptimizer(self.learning_rate)
train_op = opt.minimize(loss, self.global_step)
return train_op