Skip to content

Latest commit

 

History

History

tabla

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Welcome to TABLA!

Tabla is an innovative framework that accelerates a class of statistical machine learning algorithms. It consists of the accelerator template, domain-specific language, and model compiler.

This document will help you get up and running.

Step 0: Check prerequisites

The following dependencies must be met by your system:

  • python >= 3.7 (For PEP 560 support)

Step 1: Clone the VeriGOOD-ML source code

$ git clone --recurse-submodules https://github.com/VeriGOOD-ML/public
$ cd public/tabla

Step 2: Create a Python virtualenv

Note: You may choose to skip this step if you are doing a system-wide install for multiple users. Please DO NOT skip this step if you are installing for personal use and/or you are a developer.

$ python -m venv general
$ source general/bin/activate
$ python -m pip install pip --upgrade

Step 3: Install TABLA

If you already have a working installation of Python 3.7 or Python 3.8, the easiest way to install TABLA is:

$ pip install -e .

Step 4: Compile a benchmark using TABLA

You can compile a TABLA benchmark by running the following commands, where <benchmark_name> is one of backprop, linear, logistic, reco, svm, svm_wifi and <feature_size> corresponds to the feature size of the target benchmark:

$ python benchmarks/run_benchmark.py --benchmark <benchmark_name> --feature_size <feature_size>

Compiled output will be stored in the tabla/benchmarks/compilation_output/ directory.

Step 5: Simulate a benchmark using TABLA

After compiling the benchmark, you can run a software simulation of the benchmark by running the following command:

$ python benchmarks/simulate_benchmark.py --benchmark <benchmark_name> --feature_size <feature_size>