-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate.py
173 lines (159 loc) · 4.36 KB
/
calculate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from math import sqrt, sin, cos, tan, acos, degrees, radians
def e(code):
return eval(code)
def circumference_area(edge_a, edge_b, edge_c):
half_circumference = (edge_a + edge_b + edge_c) / 2
return half_circumference * 2, sqrt(half_circumference * (
half_circumference - edge_a
) * (
half_circumference - edge_b
) * (
half_circumference - edge_c
)
)
def sss(edge_a, edge_b, edge_c):
if edge_a + edge_b <= edge_c or \
edge_a + edge_c <= edge_b or \
edge_b + edge_c <= edge_a:
raise ValueError
circumference, area = circumference_area(edge_a, edge_b, edge_c)
cos_a = (edge_b ** 2 + edge_c ** 2 - edge_a ** 2) / (2 * edge_b * edge_c)
cos_b = (edge_a ** 2 + edge_c ** 2 - edge_b ** 2) / (2 * edge_a * edge_c)
cos_c = (edge_a ** 2 + edge_b ** 2 - edge_c ** 2) / (2 * edge_a * edge_b)
rad_a = acos(cos_a)
rad_b = acos(cos_b)
rad_c = acos(cos_c)
sin_a = sin(rad_a)
return f"""∠A = {degrees(rad_a)}°.
∠B = {degrees(rad_b)}°.
∠C = {degrees(rad_c)}°.
S = {area}.
C = {circumference}.
rI = {2 * area / circumference}.
rO = {edge_a / sin_a / 2}.
sinA = {sin_a}.
sinB = {sin(rad_b)}.
sinC = {sin(rad_c)}.
cosA = {cos_a}.
cosB = {cos_b}.
cosC = {cos_c}.
tanA = {tan(rad_a)}.
tanB = {tan(rad_b)}.
tanC = {tan(rad_c)}."""
def sas(edge_a, angle_c, edge_b):
if angle_c >= 180: # The angle of a triangle is never bigger than 180°.
raise ValueError
rad_c = radians(angle_c)
cos_c = cos(rad_c)
edge_c = sqrt(edge_a ** 2 + edge_b ** 2 - 2 * edge_a * edge_b * cos(rad_c))
cos_a = (edge_b ** 2 + edge_c ** 2 - edge_a ** 2) / (2 * edge_b * edge_c)
cos_b = (edge_a ** 2 + edge_c ** 2 - edge_b ** 2) / (2 * edge_a * edge_c)
rad_a = acos(cos_a)
rad_b = acos(cos_b)
sin_c = sin(rad_c)
area = edge_a * edge_b * sin_c / 2
circumference = edge_a + edge_b + edge_c
return f"""c = {edge_c}.
∠A = {degrees(rad_a)}°.
∠B = {degrees(rad_b)}°.
S = {area}.
C = {circumference}.
rI = {2 * area / circumference}.
rO = {edge_c / sin_c / 2}.
sinA = {sin(rad_a)}.
sinB = {sin(rad_b)}.
sinC = {sin_c}.
cosA = {cos_a}.
cosB = {cos_b}.
cosC = {cos_c}.
tanA = {tan(rad_a)}.
tanB = {tan(rad_b)}.
tanC = {tan(rad_c)}."""
def aas(angle_a, angle_b, edge_a):
if angle_a + angle_b >= 180:
raise ValueError
rad_a = radians(angle_a)
rad_b = radians(angle_b)
angle_c = 180 - angle_a - angle_b
sin_a = sin(rad_a)
d = edge_a / sin_a
rad_c = radians(angle_c)
sin_b = sin(rad_b)
sin_c = sin(rad_c)
edge_b = sin_b * d
edge_c = sin_c * d
circumference, area = circumference_area(edge_a, edge_b, edge_c)
return f"""b = {edge_b}.
c = {edge_c}.
∠C = {angle_c}°.
S = {area}.
C = {circumference}.
rI = {2 * area / circumference}.
rO = {d / 2}.
sinA = {sin_a}.
sinB = {sin_b}.
sinC = {sin_c}.
cosA = {cos(rad_a)}.
cosB = {cos(rad_b)}.
cosC = {cos(rad_c)}.
tanA = {tan(rad_a)}.
tanB = {tan(rad_b)}.
tanC = {tan(rad_c)}."""
def asa(angle_b, edge_a, angle_c):
if angle_b + angle_c >= 180:
raise ValueError
angle_a = 180 - angle_b - angle_c
rad_a = radians(angle_a)
rad_b = radians(angle_b)
angle_c = 180 - angle_a - angle_b
sin_a = sin(rad_a)
d = edge_a / sin_a
rad_c = radians(angle_c)
sin_b = sin(rad_b)
sin_c = sin(rad_c)
edge_b = sin_b * d
edge_c = sin_c * d
circumference, area = circumference_area(edge_a, edge_b, edge_c)
return f"""b = {edge_b}.
c = {edge_c}.
∠A = {angle_a}°.
S = {area}.
C = {circumference}.
rI = {2 * area / circumference}.
rO = {d / 2}.
sinA = {sin_a}.
sinB = {sin_b}.
sinC = {sin_c}.
cosA = {cos(rad_a)}.
cosB = {cos(rad_b)}.
cosC = {cos(rad_c)}.
tanA = {tan(rad_a)}.
tanB = {tan(rad_b)}.
tanC = {tan(rad_c)}."""
def hl(edge_a, edge_c):
edge_b = sqrt(edge_c**2 - edge_a**2)
if edge_a + edge_b <= edge_c:
raise ValueError
area = edge_a * edge_b / 2
circumference = edge_a + edge_b + edge_c
sin_a = edge_a / edge_c
sin_b = edge_b / edge_c
cos_a = sin_b
cos_b = sin_a
angle_b = degrees(acos(cos_b))
return f"""b = {edge_b}.
∠A = {90 - angle_b}°.
∠B = {angle_b}°.
S = {area}.
C = {circumference}.
rI = {(edge_a + edge_b - edge_c) / 2}.
rO = {edge_c / 2}.
sinA = {sin_a}.
sinB = {sin_b}.
sinC = 1.
cosA = {cos_a}.
cosB = {cos_b}.
cosC = 0.
tanA = {edge_a / edge_b}.
tanB = {edge_b / edge_a}.
tanC = +∞."""