-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLab6.nb
6896 lines (6844 loc) · 372 KB
/
Lab6.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 374010, 6888]
NotebookOptionsPosition[ 369867, 6817]
NotebookOutlinePosition[ 370295, 6834]
CellTagsIndexPosition[ 370252, 6831]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Bifurcation Diagram Functionality", "Section",
CellChangeTimes->{{3.81340913018944*^9,
3.813409140320917*^9}},ExpressionUUID->"22f08ba5-1205-4f3c-bf8b-\
4104ccbed1f1"],
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"peaks", ",", "data", ",", "ts", ",", "runs"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mg", "[",
RowBox[{"td_", ",", "gain_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"tdelay", "=", "td"}], ",",
RowBox[{"init", "=",
RowBox[{"{",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "0.5"}], "}"}]}], ",",
RowBox[{"pars", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Beta]", "\[Rule]", "gain"}], ",",
RowBox[{"\[Gamma]", "\[Rule]", "1"}], ",",
RowBox[{"n", "\[Rule]", "9.65"}]}], "}"}]}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"eq", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
FractionBox[
RowBox[{"\[Beta]", " ",
RowBox[{"x", "[",
RowBox[{"t", "-", "tdelay"}], "]"}]}],
RowBox[{"1", "+",
SuperscriptBox[
RowBox[{"x", "[",
RowBox[{"t", "-", "tdelay"}], "]"}], "n"]}]], "-",
RowBox[{"\[Gamma]", " ",
RowBox[{"x", "[", "t", "]"}]}]}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"eq", "/.", "pars"}], ",", "init"}], "}"}], ",",
RowBox[{"{", "x", "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "100"}], "}"}]}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"roundPeaks", "[",
RowBox[{"ts_", ",", "tolerance_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Round", "[",
RowBox[{
RowBox[{"ts", "[",
RowBox[{"[", "i", "]"}], "]"}], ",", "tolerance"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "@", "ts"}]}], "}"}]}], "]"}], "//",
"DeleteDuplicates"}]}], "\[IndentingNewLine]",
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"coarsePeakQ", "[",
RowBox[{"ts_", ",", "j_", ",", "g_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "}"}], ",", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"AllTrue", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ts", "[",
RowBox[{"[", "k", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"j", "-", "g"}], ",",
RowBox[{"j", "-", "1"}]}], "}"}]}], "]"}], ",",
RowBox[{
RowBox[{"#", "<",
RowBox[{"ts", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "&"}]}], "]"}], "&&",
RowBox[{"AllTrue", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ts", "[",
RowBox[{"[", "k", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"j", "+", "1"}], ",",
RowBox[{"j", "+", "g"}]}], "}"}]}], "]"}], ",",
RowBox[{
RowBox[{"#", "<",
RowBox[{"ts", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "&"}]}], "]"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"AllTrue", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ts", "[",
RowBox[{"[", "k", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"j", "-", "g"}], ",",
RowBox[{"j", "-", "1"}]}], "}"}]}], "]"}], ",",
RowBox[{
RowBox[{"#", ">",
RowBox[{"ts", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "&"}]}], "]"}], "&&",
RowBox[{"AllTrue", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ts", "[",
RowBox[{"[", "k", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"j", "+", "1"}], ",",
RowBox[{"j", "+", "g"}]}], "}"}]}], "]"}], ",",
RowBox[{
RowBox[{"#", ">",
RowBox[{"ts", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "&"}]}], "]"}]}], ")"}]}],
",",
RowBox[{"ts", "[",
RowBox[{"[", "j", "]"}], "]"}], ",", "0"}], "]"}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"getPeaks", "[",
RowBox[{"data_", ",",
RowBox[{"tolerance_", ":", "0.02"}], ",",
RowBox[{"granularity_", ":", "1"}]}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"ts", "=",
RowBox[{"If", "[",
RowBox[{
RowBox[{"ListQ", "[", "data", "]"}], ",", "data", ",",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"data", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "100", ",", "0.1"}], "}"}]}], "]"}]}],
"]"}]}], ",",
RowBox[{"peaks", "=",
RowBox[{"{", "}"}]}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "3"}], ",",
RowBox[{"i", "<",
RowBox[{
RowBox[{"Length", "@", "ts"}], "-", "3"}]}], ",",
RowBox[{"i", "++"}], ",", "\[IndentingNewLine]",
RowBox[{"AppendTo", "[",
RowBox[{"peaks", ",",
RowBox[{"coarsePeakQ", "[",
RowBox[{"ts", ",", "i", ",", "granularity"}], "]"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], ",", "i"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"roundPeaks", "[",
RowBox[{
RowBox[{"peaks", "//",
RowBox[{"DeleteCases", "[", "0", "]"}]}], ",", "tolerance"}],
"]"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bifurcationDataG", "[",
RowBox[{"startG_", ",", "endG_", ",", "inc_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"runs", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{
RowBox[{"mg", "[",
RowBox[{"2", ",", "i"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "startG", ",", "endG", ",", "inc"}], "}"}]}],
"]"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"peaks", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"getPeaks", "[",
RowBox[{"runs", "[",
RowBox[{"[",
RowBox[{"i", ",", "2"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "@", "runs"}]}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"n", "+", "startG", "-", "1"}], ")"}], "*", "inc"}],
",",
RowBox[{"peaks", "[",
RowBox[{"[",
RowBox[{"n", ",", "m"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",",
RowBox[{"Length", "@",
RowBox[{"peaks", "[",
RowBox[{"[", "n", "]"}], "]"}]}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",",
RowBox[{"Length", "@", "peaks"}]}], "}"}]}], "]"}], ",", "1"}],
"]"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bifurcationDataTd", "[",
RowBox[{"startTd_", ",", "endTd_", ",", "inc_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"runs", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{
RowBox[{"mg", "[",
RowBox[{"i", ",", "2"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "startTd", ",", "endTd", ",", "inc"}], "}"}]}],
"]"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"peaks", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"getPeaks", "[",
RowBox[{"runs", "[",
RowBox[{"[",
RowBox[{"i", ",", "2"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "@", "runs"}]}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"n", "+", "startTd", "-", "1"}], ")"}], "*", "inc"}],
",",
RowBox[{"peaks", "[",
RowBox[{"[",
RowBox[{"n", ",", "m"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",",
RowBox[{"Length", "@",
RowBox[{"peaks", "[",
RowBox[{"[", "n", "]"}], "]"}]}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",",
RowBox[{"Length", "@", "peaks"}]}], "}"}]}], "]"}], ",", "1"}],
"]"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{"Clear", "[",
RowBox[{"peaks", ",", "data", ",", "ts", ",", "fixedData"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"importData", "[", "basePath_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"files", "=",
RowBox[{"FileNames", "[",
RowBox[{"\"\<*.csv\>\"", ",", "basePath"}], "]"}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Import", "[", "#", "]"}], "&"}], "/@", "files"}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fixData", "[", "csv_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"csv", "[",
RowBox[{"[",
RowBox[{"j", ",", "5"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"Length", "@", "csv"}]}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"realBifurcationData", "[",
RowBox[{
"fixedData_", ",", "gains_", ",", "tolerance_", ",", "granularity_"}],
"]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"peaks", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"getPeaks", "[",
RowBox[{
RowBox[{"fixedData", "[",
RowBox[{"[", "i", "]"}], "]"}], ",", "tolerance", ",",
"granularity"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "@", "fixedData"}]}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"gains", "[",
RowBox[{"[", "n", "]"}], "]"}], ",",
RowBox[{"peaks", "[",
RowBox[{"[",
RowBox[{"n", ",", "m"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",",
RowBox[{"Length", "@",
RowBox[{"peaks", "[",
RowBox[{"[", "n", "]"}], "]"}]}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",",
RowBox[{"Length", "@", "peaks"}]}], "}"}]}], "]"}], ",", "1"}],
"]"}]}]}], "\[IndentingNewLine]", "]"}]}]}], "Input",
CellChangeTimes->{{3.813409168885004*^9, 3.813409169165066*^9}, {
3.813409268751958*^9, 3.8134093004850698`*^9}, {3.813409337548147*^9,
3.8134093993183866`*^9}, {3.813409535082079*^9, 3.8134095402323647`*^9}, {
3.8134096623074503`*^9, 3.8134096624914703`*^9}, {3.8134102138157473`*^9,
3.813410222815915*^9}, {3.8134102961794205`*^9, 3.813410315249942*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"56d1dfaa-6d91-4cf6-9048-137f3b62fcc5"]
}, Open ]],
Cell[CellGroupData[{
Cell["Lab Waveforms", "Section",
CellChangeTimes->{{3.8134115217013483`*^9,
3.8134115247259455`*^9}},ExpressionUUID->"d7bd68e2-d594-4a78-974e-\
7fee29c1c1b2"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"fft", "=",
RowBox[{"Import", "[",
RowBox[{
"\"\<D:\\\\F20\\\\Nonlinear Optoelectronic Dynamics\\\\Week \
7\\\\oeo_300d_33950g_fft.csv\>\"", ",", "\"\<CSV\>\""}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"waveform", "=",
RowBox[{"Import", "[",
RowBox[{
"\"\<D:\\\\F20\\\\Nonlinear Optoelectronic Dynamics\\\\Week \
7\\\\BifurcationData\\\\oeo_300d_33950g.csv\>\"", ",", "\"\<CSV\>\""}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"waveform", "[",
RowBox[{"[",
RowBox[{"i", ",", "4"}], "]"}], "]"}], ",",
RowBox[{"waveform", "[",
RowBox[{"[",
RowBox[{"i", ",", "5"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "@", "waveform"}]}], "}"}]}], "]"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"fft", "[",
RowBox[{"[",
RowBox[{"i", ",", "4"}], "]"}], "]"}], ",",
RowBox[{"fft", "[",
RowBox[{"[",
RowBox[{"i", ",", "5"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "@", "fft"}]}], "}"}]}], "]"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.813411538793082*^9, 3.8134115589555244`*^9}, {
3.8134115920749397`*^9, 3.813411673955742*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"db0e3426-d361-48c7-aeaf-6b2b30fee0cb"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.003666666666666667],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxd3X2cjXX+x/HrnMY0JrknSWayklaykiTZ69hWUlvSjVXJTLJ+srLWSpLM
SJJkJUlWmhFys7JIkruZhISs28SkGTMYzIyZMcbcmHOu33Wd98z3NXv2n328
Hp/vuc4155y5ntd1zhndMuRvT/zFb1nWjrqW5f1/zf/m1LGy2g8qTKtaUXzo
0SGP2zV9/sY1WY8OSTR9Ofrd9LFzhpu+0NFy56NNPzNwc8KpCWNNl7Y8kTZ2
znjTQzv3DsSsmhhx+2TTT1+yUueNejNie2+ZnrWzPL7DtLcjtv+O6Q7v3DB5
W8q7poc9c+b3MaveM/3JrjbWExv/GfHzvW/6bf+8tDHDZ5u+5Zuu7v58YHrL
344kbxk7J2L/PmR/WvgD0ZPnmp6dUxTXYdpHpjuuuM56fOY81jeLdh/Pj1mf
dTll/vz5pu/4vEHytpR/md49OpSQs3QBj2ePAjtm1SemLV9MfMd1C/l5915x
+m/81PS9sxtljduWEvH4p5p+bGjQTjxDR1+JSh8zfJHpEXf446fm0bdsq+s+
Pp/x+F2OtlYW01vfKU/aMnYx69NKM/eX0ccfD7qP3xLTPadVppUEl0Q8nkt5
vPs5KS2iPjfd6FS0+3qgX7khKrln7DLTX/y71Ok3k56dGZM4pOHyiMd/ud39
NitwasJ6u+PKMnta8xWmG/0amzp/Pv3QmKq4Va1Wmv5ieUXSthR66H0+62Cb
f5vW80V//pKTWdp+lb31TSt5/vxv7OI6Pvf3YZWZ/7LXSWvZ6QvTXbo6cR3X
0Y3utFLtrqtNvzTPcZ9fus/7VvLQHv8x/WmFkzluG/36WidlR/wa03r+6cz3
nbhji+le8xz39UCvaWIln2+31n5odH5m/43b7M/HOe7vy1ozb1biOFdX0K9W
OHFT8+izr1iJ9TuuM53xs5MybxT98NNWVvyadfbR+6ws7+da9Zzlvp7oRdsc
u0uXL836hj0s9/eRjv7USeu9gR6+xHFfb1+ax/tYvBU/sPt60/umOAneupr1
d77rJI3YwnxhtJVeEmReb4plvWF/Zdp/1rGjJ9ND852EWdvpw8Ot1BZRG3g9
7HUyF/Wmuz1kua9fev5jVmD9bnrWWiepZ+zXpkMdrfRdj3xt9q/kfcd9fTN/
ep4Td3w/vaOJ5b7eN5r+ZpyTktefvukNxz1+0u9WOE7wCF3xihWY1vwb04U/
O0kNB9L6/fjG7M8XKwsy22Qw7/vqAff3ZROPT7dbErsOpr/44kf394fe/XLr
9D6naq0P/z5tNm1de9p+duhmc3/6/WI+tOeplJG5dHKwc1Zp+y2mW+1pGu8+
waZPd+nk/v7RyVbj5NkFtdb/eNn9fdzK+nsaZC0eTSdfc8n9/aRbHTiSsKFk
q73po4+Tt5fGBO59/1b393Wb/dYv+wOeE8nRh9J2j9tm/8M+kDK6Z2xAHtH3
zqkTyKjYZrdrVpQ5oWls4EjCuaShPdLsExcauMfduoFPfvCnFkxMM/N7Pzrj
/n7T0jzdbO+xYcXu7zs9aNeNgem90s3+rLzjOvf3P93cvvyDqqTGU9Lt9JfW
JAwbFht4sKLAPR4wf/KZ5ukLdrC9+i/GBBLPsH7QDxWZbaO/NetXdspLOt+O
3jirSfzqPt+a28sX5k8NupLQbfq3Znufbc91jyes/0+bhqnpe1gvj2pt/4OS
tL71tpvHK7ridEL9jtvNvMkz11uHH91utvdCWsg9/jD/z61F9qBZ9NapLdzj
ET1+VmzimQP0rtKrzopi+u4TwZRRjb8z29fx6jszb7DYl1X25Hdm/26OCbk+
Mp+R78RNnktXHPCl995A/+N4yI499p09M71T4qztdQOntlpZ+8uY9/vMnzyn
xQ5z/89f68QN7L7DzPfmWemtnqXlL92nq+MsXbDDPP63bPUlj9jCvFObUFyn
k2xfx0f6ujxf4sbWO03f+HjImWjT0+62Unsl7jTbk+/0NZNCmXsW7TSPz8k6
PvfnZJ43Iug8mUPrfGCX2f73XXyBk213mfnRj4Pu8ZZ+4A0nadiwXWb7a1/w
ucdfusOIUErhMtbreExf28WfNf4899fs45B7fP7ezKdMtOL9Hb438+JEv3u8
Zu7sDCXMGEm/vNJyzwe/N/efuy6Y1HT19+b51fGc+Xev+9IXFnL7g1nBhCEN
d5u5vdNx2nXebeZfrPCl5vXfbfZnc/2QvWYM87kfWe75D7e/5nV/Yvf1zBtl
hVwPuH3SDit1eynrC5b7XR9+MH31eifzkW4/mNsPv2QlNxz4g7n9uD8H446O
Z94/03HPd5mnfecLDN7E9n5sH3I9oe+73krOvfqDeXyWF/viV7XaY7a3YUAo
bXTPPWZ92x6W6w3zD+L8VuUk5te3d1x/mE+o54ufkk6/8/dgWp9T9JWnnYR6
/r3m9vJpr9n/MSnBlLkP7DXrs6Y4rles33SdP731VObyi/k9T1vW8l3Ml3T3
p47MZb7u05DdOWaf6fgplusb/c//8ydv6rvP3P6TfaG4pBHMxz3lS31gBv3W
N0H3+mGf2f9LC53MffvoxDd9rodsb1RuMG5A/R/NXOerP5r5w2t8iZn9mO/Y
GMpcPJr5XQut5OGz6dTJfvd6hfWrz4bSig8xb7XXStxQQr/7H7/1etP9pj9u
6qTYXffjSYUViBrAPNkXcr2lL55xEmbOowft8bn+7jePx4hOoZTmx5n/3MRy
PaYfLPdlpbT8L149H3J9pu88Y1m3D6LvfziYUjCRXnmnY69bSLdo4nOvx+h2
44NJPTJpeX7A7N/kVO987oCZb2vrnc/T+v1n/R11fa73dPB8yD3/o3X+z+1v
WxeKWzOG+fInHPd8gLmOF3Tzbr74Y4vpJzc7Cd3XHzDPx5HnLPd8gbmOJ3To
N5Z7/kDr+MLttzzkuOcTB82853nHvT6r6ejAbzv63OuRg/YXFz+r+KKPr/r4
c9CueV/jXH/LPd+gdTw6aLav6xd6zibLOjqebvqcL7HbdO5fxyvmB5Msq2oF
3SDKsQdvOmiOT7OWOCnpew7a/5rv/a9O4I1zVlabjIP2sPD/Qvamkd710UF7
qntS3npqia3j20G77IqTlNf/nN2+vy+9b71DdpPrrfTS9r/Y5Z0d93z6kLmd
rqcO2Q9eDtqe48Oa+9JH9zxkrs+W/MtxDj16yJwvz/7VCnQdTOv8h+53jZVV
MemQOZ/972IrMGgWreMlPXO3kxm/htvr+Ml84/tOwpkD9L2dLff8nh73Vcg9
fzpkru90fD1stnd6vpU6qvFhc76q4+1h83zq/OqweX7aJFipcx+gE3JCmWVP
Hjav50dvs+KfHcr8x++960fmsX9y0lpPpXU+xvrxv/Ml5iyl+zbyrjdpHb9p
na/Rl19z3OsTWudv9JDBvkDnmCOmU7KdpDktaB3vaZ3f0Q8/YiVu6kvrfI+O
Ge04k0YcMa/X6Q2txFMTmMsHWueDR8zjcfdrlnu9xO3/Hgy5l1PM5QedecqK
73SS7a3ZHkqaXXAk4vzxiF1g3+g+33UDrZdZ8QPqH63+/akTeK6Dk7Cx9VH7
208unGg/yKl+f+So/XrT1X1OTbhs/9DA516PH7X7vHP/nD6nLtnRHzp2Zr+j
5vxV55u0PKJ7P+Ndv9Pyif6ypy9rz6KjZv+LvvXej6F1fnrU/Lzyi17wW8t6
Kof18ozW+etPpk8UOs6EprTOZ38y24va6CTZXZlPHWhlLepNb/8lFBc1gNb5
7k/m8f7dt1b67nHMfZ+F4jpMo+UjnXG7L7VwGb0q1nu/6SdzfNP5MfOWhVZq
8+P0n//hZI4/T8tTeueffck9Y4+Z/uheJzOl5THz8+p8mnm65SQM7UH3WuSk
7XqElr/cXufbzPPrWu71M63zb9bLZ3reGCu56epj5vGT18x1fs78p25Wco9M
tt9kSyhtYSHzDwc5cZb1s5nLc1qe0/Kcluc/m+3J858jPGf9X/dbgTVjaHnO
enlOy3NantPynO3Jc+azk52ExDPM5Tndb2nIaRt93KyX58fNXJ7T8pz18pyW
58cjPGfe7gYr/uh4tifPaXlOy3NuL89pec76F5p5ntPfZzuu5bQ8px8vdtL6
1jvB+UUdy71+oW8/7yTU73jCrC+octzrGeb+U57nJ8z+7LrsJHQdzPrucd7n
J8xT8h2nYhLzJjd4njNvf9XznM6v773/SvtKnLgp6fTOaCv5zAG2d+KC414f
nbBTm3VPXzy6buDTkBO3sviEvbxT0eTtpVGBL7M9zzPstz5o0m1j66B92/We
5xn2rO2l7QfNumTnxVuu5xl2ctBxj7dnbauOFejSJcOc7+xo4XmeYe9+2e+e
H+y3j1c5rucZds37PgsbWoFnh2aYx2fdZSdpy9gMe/5T6e75U0ygXZzlXm9l
2EmHE9P27bOqPc+wbx/k7cFl22luuZ5z/0NPe55n2C/N9M6/frZ/ru95nmFP
7uEkeNf5n7SxEmOPcf9roy33+izDnK/suuC935zB+6khx71e+8W0PKdfvOJ9
HkDr/Wn6/otO0qa+9JoWnud087OOe31Hy3P608tOygMz6CExlvX5AvrVfMe9
/qN7WFbqiC2/mJ+n/2nPc+bNyh2700n6nTaWe31Iy/NfzOPzQkvP85Oc74U8
z+n7GlvpLTvRj19xnIk23STWcq8n6dsvOim9EulPWlhZi0fTej+efqWh5zmd
cdLJ3LOIfizGcq8/6catrORZ2+n2lpVefIjuedpxnsyhfeVOwoYSemwb7/3+
X03L81/N4/loS8v1nPmXud71K31bY89z+r1Mx44aQFuxVvKwYXSzi457fUsf
93mfJ9DynF5X4aQVLqO/P+l5Ts8odhLW76admzzPfzXn500tK2v8eebynJ+v
oMz7vCLTzNdeZ7nXy/SuQifO34F+9xrv8yo6JdfznG7S2POcHp/puJ5nmv2R
5/Samz3PWb/TZwXWLaSnN7NSm66m9fkY/eVJz3P61WLHvR6n826y0hcW0roK
yYr4fafnFjkJQxrS/61jJc9pQR8v87ynddyjF15nWbd1ppcHvfP9LPPzrit0
7Om9mOdHeef/9LhrrNS8/vTkUiet1bP05ljvfIHeWeVdH9AHLjpxa8bQOr7Q
H/qt5MZTaB1v6J/reucXtI4/9MuV3ueN9LIG3vVFlnk9rfVZid3XM99S4n0+
x8//4CUnbcEO5snXWln79tV6PsKfZ9E76nvXI7WeD8t7/4HtPeM47vUJ8xeL
nZTtpbWej/DxrdbzUe69P3HK7O9dZU7cgPqnzHxkPe/zM1rHP3pykZN0vh29
uY6V2rIT3TvKynqk2ymzfzo+Mp9+nXc+RH8Y9K5/6NZV3ud19MBG3vUQPeQa
K33McPrlUse9PqKXxXrvh9Cd61qB6Mn0/VedhG7TaR1v6WS/lTp/Pj3jspO2
ZxGtz4tpHY/pZyq98y96TgPLve6gb65vpabvoXW8rvV8XHIy22TUej6u9a7H
aH0+Tet4Tuv8rdbz4XjXa9l4FT6fyzb3Nz3ayprQlNb5Hetblzn2ybb0wHre
+zf0iyHv+o7W+V+2uR4tu+h9fpxtzsc6R1nW4UezzfnO/Vcc9/ovu/r8ywq8
cp33fk+2eX9JfmTbsVHe9k/bsVXe5+/Zds117B8bedeH2eZ8R+8H8fPIF/Yv
p8SxB83KtuuUxAS873HcXNdKnDmP2+v8Mtuu9+H7cYNmxQaGNLTc68ls836O
zjf5+a64R9MnNmab8zmdf2ab880eMd71Jut7V3rvLzH/b7mT0vw4j0/d+t77
TczlF936kuOsKKZXFDl2RgW3z65jJdbz53A+HvaN1vks3dlx0lJa5vB5S9Bx
DrTJ4Xw97B+t811uH1vmXd8yn1vqpMx9oGYeHdgf633+n2PeD9H5cI45nz19
0XHaD8qxm8RYydtLz9k3R3nvd+XYBeecNO88aZnfSpwxMse8f6jz5Rzz/qE8
zTHvH1656r0flmOe/981srL6zcwxz/+mBlb85Lm0vKUPlDgJOUvpunW962n6
w2ut9N4bcszxTR4z1/k3nW1Z8cf30wWXHDv2GC2vaZ2f01vKHfd6nC693nv/
jZbnpyM8p+U5Lc9P8/sR9py5zu9peU7L89MRnjOX57Q8p+U59y/Pmctzut9V
x14zhvXynLk8Z3/kOXN5Tstz1stz5vKclue0PKflOS3Paz0fYc+5P3lOP3a9
lZh4hvXyvNbzEfa81vMR9rzW8xH2/IxpeX7GbF+enzGPnzxnvTynryv03q+k
5Tktz2l5TstzWp7T8pyW57Q8Z3/lOXN5TstzWp7T8pyO9VlZexbR8pyW59y/
POfxlOesl+esl+e1no+w57Q8p6+4x9OpedxenjOX59y/PD8b4Tmt6zdantPy
nJbnZ839y3Pm8pyW56yX58zlOa33e2h5ftb8PPKc7clz5vKc28tzWp7T8pyW
57Q8p+U5Lc+5f3nO/slz1uv9JVqe0/K81vMR9rzW8xH2nJbntDzP5fkIe07L
c1rXr7Q8p+U5Lc9zzfmJPM81n1fJ81xzfiDPWS/Pc+2zk1Jdj2MC8jzXfL4p
z3Or308rrfY815zfyfNczq/CnnN/8pz7m1zpfX+QuTzP5f35sOe0PKflOS3P
aXnO9uV5LudXYc+Zv+w4CbHHmMtzWp6zfXlOy3M6uZ4Vb1nn+P5A2HNantPy
nJbn58z+yfNzZn/kOevlOS3PWT+ykZW8qS9zec5cntPy/Jx5vuQ5+yPPWS/P
2b48p+U5Lc9peU7Lc7Yvz5nLc1rvH7JenjOX57Wej7Dn58z1gTzn9vKc9fKc
lue1no+w5zw+t9WxrFujz5v18pyW5+f5flLYc+bynLk8p+X5eXP/8pzby3Na
ntPynJbntDyn5Tld5h5Pj46n5Tktz2l5zv7Lc+bynJbn/HzynLk8Z55T7iTN
2k7Lc1qe13o+wp6zP/KcuTxnLs+Zy3Nanl+I+Lzlgrl/ec5cnjOX58zl+QXz
+5cd633/nrk8p+X5BbO/8pzty/MLEZ/fcHt5TstzWp7T+xtYVuUkWp6zfXnO
XJ7T8pzW+8O0PKflOS3PaXl+IeLzIlqeX4i4PqflOdvT50m0PKfleV7E9Xme
2Z48p+U56+V5XsT1OXN5TsvzvIjrc+bynLk8Zy7PaX1+RcvzvIjPs5jLc1qe
s16eM5fn7I88zzOvZ3nO+mcvOSlNV9PynO3Lc+byPC/Cc1qes16e0/I8z3zf
Q57n1ZwvVXueZ3/nfVy4vdSW5/nV73+UVV+f55vzHXmeb/ZXnuebn/eZKCt9
R3x+hOf5PB9hz5nLc1qe50d4zu3leb75PFSe59t33vSH+05NiKr2PL/6+ytV
du+6VnzSiHy7Z+yxxaN7Xqq+Ps8310XyPN98HinP883nofI8n/fbSpzMsXPy
zfm1PKfleb45H5fn+RHX56yX58zlOS3PaXlO6/NCWp7T8pz9kefM5TmPtzwv
MM+3PC8wz688L4jwvIDjVdBJOd+uIMJz5vKclucFnF+FPef2+nySlufcXp7T
8pz18py5PKflOfcvz5nLc9pxj6fz59PynPuT58zlOXN5TsvzggjPmctztifP
aXnO7eU5z5c8Z3vynJbnF/l9DjqZfevR8vxihOe0PKflOS3P2Z48p+U56+U5
881+7/vGzOU5c3nOXJ7T8vyieXzkObeX56yX56yX57Q8Z708p+U5Lc9peU7r
82BantPynJbnF833w+Q5c3lOy/Naz0fY88IIzwu5HrzipI1qzFyeM5fnzOU5
Lc9pff5My3O2J88LeT7CntPynNvLc+byvDDCc9bLc3pcjJXVeiotz2l5Xsj1
YNhz9lees16ec//ynPXynPXyvDDC88IIz1kvz9m+PGcuz+kHyxxnf1mt5yP8
vyLTI7aMndMiqsjc3+i/fturc0yR2b7ddfCmvvVY3/v0yuFDGrI+zGpT5knh
DdJv3Vj3N6ta0U/lLF2wI55+5oNLfU+2pfW5Cvfv7tyA+h2Zz//+8ajbOtPu
sXii3ZX9GRW4r8PA7sx/rlq9bXRPevmuR7pN70V/8crHZxb15vZvhH9g+s2L
k+sdfpT1BSuvpOT1Zx5++AYw3/6brF2tnqXDuzeY9fp7f34+3zO/nzxsGPOD
bTIqJo3g9j8dvG35vFH05+6jt2ZMkTnfaTiw+/rd44rM97+aX/v2kFMTiqrP
34L2mQPeBots72wn9liJnZf0t+mNpxSZ7++6T66/w7Si6u/LF9u3Rk+e+8AM
9ue3X/34wKBZRXaXFcnOT4tjApWTvCe4Zr0v4HT8esTMeUX2Tw/ftWXx6FJ7
xIUOoaULiuyXi5wU7zrN27ttKUXm8zD7xWa3HltcZM6n6nd0f5uWFZnvLzX9
JfRIzKoi8/nYpI//kRm/pojzmSHeT1xkzpeebPR89BMbmf/Ge/i20O3ffbDj
lHR6zoOb0xfsKKr1fqr3ANLD05bk7ttHuy+WxDMH6M96bygJHqGXXfZ/1vw4
/eq2lJadTtITX87f3ecU/afwBovM+Ze3tfHn6S2fPTxldgE9Y2Tu1RXF3P79
m+5eub2Un//qseU9MyqY713k7SB94PEPhtbzF5tOdfeubXSx2f7SH16f0TOW
eYO3i1oPqE9n9ps5b1Rj+nToeO9pzbl9+OltSX/z6ncjN7Zmfdu777UOtqEv
ez9uO7pi1S23+TvQP3ib60R3Cf+Pvjc76dQj3eiYVa2eHdqDvv65l2LesIvN
4+P+sO4LmvlD7tFqdR/60fe/377rEfpmd2uZ/eg2ddeeL3uSfm/nrW80HMjP
Gz5cDWL+wu8bLOmVSHcO7yDr7/m6fM+Y4cwX/ePlwTNGMv97+MKE+bj8AVO3
jKUfDL9g6Ef+ElhVMJH+6pav7OjJtN6npt/916fDuk3n/sI/7kzmO92jy/DZ
9J7/Vrn+0TXHiZrbpzx0ts+6hcz/1nhK+p5F9PH9ZU/mLKV/feOPfvcYaDrM
x2r6yysdb++4jva21nsDfdE7nG6iSzq8lzNuG63jHr17ySuxy3fRd71wYWH6
Hto9+DU/vp++9sThHcWHaB036V+e2JrXJoPu0+Au12P6hvAPTLd656bPR+by
eOV7T0ce82Krzo8LC+nntr6WuKGEDu9eGf27e16clnuV17c8v2Tm8pyW57Q8
p+X5Jb5vGH5CaHnOenlOy3NannP7HY/938nS9szlOS3PaXlOy3NantPynJbn
tDyn5Tn7J8+Zy3NantPynJbntDyn5Tktz2l5fsk8n/KcuTyn5Tktz+mn7z/d
qsM0Wp7T8pyW59y/PK/1egp7TsvzWq+nsOe0PKflOS3PaXlOy3NantPyvNbr
Kew5Lc9rvZ7CntPynOdfnl8y5/fyvKajA/L8kr3EOwwsLq/2/JJd8zlc7u0v
DEo8c8l8n0ue1zyeP1R7zuMrz9kfeU7Lc1qe0/K8xOy/PC+xZ7bzpXt/lyzP
S8z7NfKclucl5ueV5yXmfFSe0/K8xJx/ynNanrNenjOX57Q8p+U5Lc9L+Hvx
sOfMx9/w64K5DzCX58zlOfsjz1kvz1kvz0vM38PJ8xJ7wKsHq35aHBWQ5yXm
/UN5XmKO4/K8xC4rdmzveynyvMS8fyjPS8z5rjwvMee38rzEfP9LnpdEeF5i
Xj81nzv/r+e0PKflOS3PaXlOy3O6bp3nMvYs4vUmz5nLc1qe0/Kcbv3lZ1vc
V3SE57Q8p+U5Lc9peU7Lc1qe0zXXQTU/jzxnLs9peU7Lc1qvA1qe0/Kcluc8
3/KcuTy/HOE5Lc9peU7Lc/o/qXFVE5rS8pyW57Q8v8z3s8OeM5fnl83rUZ4z
l+e0PKflOS3PaXl+2Tw+8py5POf+5Tlzec5cntPynPXynJbntDyn5Tktz+le
//ykx5oxtDzn/uU5c3lOy3NantPynOdHnl823weW55cjPGe9PGcuz2u9nsKe
0/Kclue0PGd78py5PKflOS3PaXlOy/Nar6ew5/Sh1298/cwBWp7T8pyW57Q8
p+U5Lc9peX45wnPm8pyW5zz+8py5PC81Lc9peU7L81Jz//KcuTyn5Tktz2l5
TstzWp7TL7700aaWnWh5TstzWp6zv/K81Dwe8pz18pyW57Q8p+U5Lc9LzfmX
PGcuz2l5Tstz9k+el5r31+V5qTmfkuel/Ptd4RdMqTn/kOe0PKfleak5P5Hn
peb8pHRAk8p+M2l5zv3Jc+bynJbntDzn/uQ5c3lOy3PWy3P2X56zXp7T8pyu
+Vy5puU5Lc+5P3lOy3PWy3NantPynP2V58zlOdt/+4/vd5+aR8tzbi/Pmctz
tifPmS+4dKylZV0xt5fnV8x6eX7FrJfnzOU5Lc9peU7Lc1qe0/Kclue0PGd/
5DlzeU7Lc1qe0/Kc7cnzKxHvt1+JeL+dludsT57T8pz1d2Q99WzXwVci3m+n
5fmViPfb2Z48p+U5Lc9peU7Lc7Yvz5nLc1qe8/qQ58zlOS3P2b48Zy7PaXlO
y3PuT57T8pz18pyW5/S2Hw/OH7GF/ZHntV5PYc/ZvjxnvTxnvTyn5Tm3l+fM
5TlzeU7Lc9bLc+5fnjOX58zlOXN5zlyeM5fnZablOS3PaXlexr/fEva8jM87
w56zvt/mx46ntKTlOS3PaXlOy3NantPynJbntDwvi7g+Zy7PaXlOy3NantPy
nJbntDyn5Tktz2l5TstzWp7T8pzOWr63xdHxtDyn5Tktz3n+5DmPlzxnvTxn
Ls9pec56eU7Lc1qe0/K8Znt1qj0vsw/OSPrjxta+as/LzPmMPC8z5xfynJbn
bF+es7/ynLk8p+U5Lc/pMR89NDD2GI+fPGf78pz18py5PK+ZR1d7Xma+3ybP
y8z3+eV5mfm8UrtXZrdqZFne30nL8zK7/hAr3vt3r+R5ufn+lzwvN59fyvPy
iOvzcnP+K8+Zy3NantPynJbntDyn5Tktz2l5Tl/z1s55dlf2X56Xm9eDPKfl
eXnE5+d0i7uuf21TX1qel/N9n7DnzOU5Lc9ZL89pec56ec5cntPynPXynLk8
Zy7Py83rSZ4zl+fcXp4zl+flEZ4zl+dsX54zl+e0PGe9PGe+Iu7djYXLaHlO
y3NuL89pec56eV5urnfkOevleXmE57Q8Z3vynJbnbE+ec3t5Xh7hObeX57Q8
Z708Zy7PaXnO/ctz5vKclucVZv19119b3ja6IsJzWp7T8pyW52xPntPyvML8
PPKcuTyn5Tnbl+e0PGe9PK8wx3N5znp5TstzWp7T8pzty3Pm8pyW56yX5/y8
8pz1+yqndHt2KC3PaXnO7eU525fnrJfntDxnvTxnLs9peU7Lc+5fntPynPXy
nJbn3L88p+U56+U5Lc9pec7t5Tktz1kvz+nnz1mvztpOy3NanrM9ec5cntPy
nJbntDyn5Tktz2l5TstzWp7T8pyW57Q8r+T4GwaJlueVEdfnzOU5c3leaX6/
5Dlzec7tC4++sWFHPC3PaXlOy/NK8/qS58zlOS3PuX95zu3lOevleaX5fpk8
rzTfL5Pnleb7ZfK80v448FwL73M9eV5pPh+V55Xm3xeT55Xm30OQ55Xm8zB5
XmnOl+Q5Lc8rI95vp+V5pXn/Tp4zT/6usrRiEi3PaXnO/clz5vKcnvv3Pxwb
O4f7k+fM5Tktz2l5TstzWp7T8pyW57Q8p+U5Lc9peU7Lc1qe83jIc+bynJbn
dOO1r3btdJLHR54zl+e0PKflOd0uIa35ymK2J8+Zy/PKiPfbmcvzq6bl+VXz
88lz5vKclue0PKflOS3PaXnO/clz5vKclue0PKfl+VXz88pz5vKcluesl+fM
5Tn99Z/uH5DZj/2V58zlOS3PaXlOy3NantPynJbntDyn5Tktz2l5TstzWp7z
eMhz5vKclue0PKflOS3PaXlOy3Me3773fTO36Wrm8pyW57Q8p+U5Lc9peU7L
c1qe0/Kcx0eeM5fntDyn5Tktz9mePGcuz2l5TstzWp7T8ryK428YJFqeV5n7
P3HbPUf71mMuz2l5Tstzbi/Pq8zzJ89ZL89peU7Lc1qes315zlye0/Kclue0
PKflOS3PqyK+D8dcntPynJbntDyn5TnbH9nsy6ZJI5jL8yrzeb88Zy7PaXlO
y3NanldFXJ9XmfeD5HmV/dw9b431rgPleZX599/leZX5Ppc8r+L9nrDn7K88
5/7lOa8Hec5cntPynJbnPF7ynLk8p+U56+V5lTl/C/p/99T63VXm+wHynMdH
nleZ8z95TstzWp5XRVyfM5fntDyvirg+rzLno/Kc9fKclue0PGd78jxo5vKc
lue0PKfledDsjzwPmr+PledBe/TpvU/3jHWqPQ+afw9dngdty339eH/X/8+i
VXPOtwvar152Mr1/51OeB835rjwPmteTPA+a99/kedC8fhZ/enns0B7BiM/P
gxGe0/Kc9fI8aF4f8pz18pyW57Q8p+U5Lc/ZvjxnLs9peU7Lc1qe0/Kc7cvz
YMT34Vgvz2l5TstzWp7Td7/39/Xz59PynJbntDxn/+Q5c3lOy3NantPynJbn
tDyn5Tktz3l85Dn7J89ZL89peU7Lc1qe0/Kclue0PKflOb3rtYsl+8vYP3nO
XJ6HIjyn5Tktz0MR77czl+e0PKflOS3PQxHfh6PlOevlOS3PaXnO/slz5vKc
lue0POf+5Tktz1kvz+k//99fu0QNoOU5t5fnzOU5Lc9pec7t5TlzeU7L81DE
9Tlzec7jI89ZL89ZL89peU7Lc1qe13o9hT2n5Tktz2l5TstzWp7T5586N6b7
elqe0/Kclue1Xk9hz2l5TstzWp7T8jxkzlfkOXN5TstzHm95zlye0/Kclueh
iOtzWp6HIq7Pub08d0zLcyfi+py5PKebde3546jGtDyn5Tktz2l5Tstzx7yf
J88d83mYPHfMvzcmzx1zfiLPHXO+Ic+Zy3NanjsR32+n5Tnbk+fM5TlzeU7L
cyfi/XZanrNentPynPWft9lUb8lo5vKc/ZHnrJfnrJfndPyvtx9uPZWW59xe
njOX59yfPKflOevlOS3PaXnO7eU5z788Z3/kuRPxfjvbk+esl+fM5TlzeU7L
c9bLc+5PntPynNvLc1qes721ez9v/FQOLc9pec725Tktz1kvz2l57pjPE2s+
h//f83crULN+41dZqS2iaH1/hpb39MADDSb1jLUC//v+PHMdH+iyC79/bkhD
umPfiiWjGtP6+zdaxw8rUPP873ux/ZtzWjDX92v5eXT+wHzkpD8nbGzN/unz
e+Y63jCvN//t+0+2Zd6rLPD2+Xa0/j6eXvXlVzf6O7B/pxqNfrF+R7anv79h
/3Q+Qk++IyXQpQvr9f0+tq/jFx3fZ//NA7vTer+R1vkL20t/IVg50WZemvb1
H6f3ovX3uVag5vWh8xvmc0+cvWV1H7an7wsy1/GQedfSZs6hR2l9Hsl6nQ/R
Rxv0/qXsSTp2lHNr1ABuf8k9+2k4kPnY3479ptWzPH4r37nzmtsH0fp7Atbr
+Mq87+Lnsx4dwlzfV6J1fsX9n9/63tYxw2l9HsL2dDzm9tN/3vyveaOYb7tn
3OnFo5nr7w2Z63jNfHD/pd/uHkfr+8y0ztfo4F+PfFowkdb3JdhfHd+ZL3z7
momNp3D/h05v3dl6Kq1/j4D1Ov7TY5z8zx6YQevvnWid/9GNW7ZKHj6b/dH3
L/h9kResX3f3I8/PnMd6vb/L/ul8kXn/fhPuW7eQ+bQv7n5rWwrb099D0zqf
5Pbtdr/4Qs5S5vp+Ji1/2N9d2R/8PmZVzTy6+vNfK1Dz75Xq/NMK1JyfDAt+
e1PHddx+wXMT/9J9Pfevv6/m/nR+yrzHuH//YfAm5vr7DebyjHnG+yfipqTT
+pyQ1vkst5/w77rBZbuY6/MnWv7x+Lbcde8J778rZP49zrYlvzm+n/X6+04r
UPPvf8lHK1DzeWXh79v4QkesQM1/D0nfH7cCNf89Ip0fWwGdbx63Zz3T/9c2
GVbgUEvH+Wnxgeq/H7ECNZ9XylMrUHN+3Wls8uY+p6xAzfnj0EP31Xkqp2Z7
31T/+w9WoOb8V97SUQUvZY8/z3r9fRmt8222v/ja+WkLC2l934WWz2z/gTa7
P/H+OwXm7y+S3zy7v4z1Oj/neJxzf9lruVd5PbVYsPa7kiCvJ3Hui/DcZ+by
nLk8p+W5L8Jzbi/PmctzWp7T8pzty3Ofeb3Jc+bynNvLc1qec3t5zlye0/Kc
lufcnzxnrvcPaHnOennOXJ7T8pyW574Iz5nLc+bynJbnrJfntDyn5Tktz2l5
zs8jz2l5zv3Lc24vz2l5znp5zvbkOevlOa3rIVqe+yI8Zy7PaXlOy3P2R54z
l+e0PKflObeX58zluS/Cc+bynNvLc9bLc+bynJbntDyn5bkvwnPuX57T8pz1
er+G/ZHnzOU5t5fnrJfnzOU5Lc9peU7Lc7rm3y36X899EZ77Ijzn9vKclue0
PKflOS3PaXnO/ctz5vKclufsnzxnLs9peU7Lc1qe0/Kclufsnxyl5Tnr5Tkt
z2l5TstztifPmctzWp7T8pzby3Pm8pyW57Q85/bynJbnrJfnzOU5c3nOXJ4z
l+e0PGe9PKflOevlOS3PaXlOy3O2J89pec56ee43Lc/95nxAnvsDNX9PIM/9
gZr/Po489wdq/vs48twfqPl8TJ77AzWfj8lzf6Dm+/Xy3B+o+XxMnvvN+ZU8
95vzIXlOy3O/OZ+R57Q8p+U5Lc9pec725bnfnD/Jc9bLc+bynNvLc9bLc1qe
s16eM5fntDyn5Tktz2l5TstzWp7T8pyW57Q8Z3/lOT+/PKflObeX57Q8p+U5
t5fnzOU5Lc9peU7Lc1qes3157g/MqWNltR9UmCbPaXlOy3NantPynJbntDyn
5Tktz2l5TstzWp7T8pyW57Q8p+U5Lc9peU7Lc1qe0/Kclue0PKflOS3PaXlO
y3NantPynJbntDyn5Tktz2l5TstzWp7T8pyW57Q8p+U5rfeTaXlOy3NantPy
nJbntDyn5Tktz2l5TstzWp7T8pyW57Q8p+U5Lc9peU7Lc1qe0/Kclue0PKf1
eRctz2l5TstzWp7T8pyW57Q8p+U5Lc9peU7Lc1qe0/L8GtPynJbntDyn5Tkt
z2l5TstzWp7T8pzW5/G0PKflOS3PaXlOy3NantPynJbntDyn5Tktz2l5Tstz
Wp7T8pyW57Q8p+U5Lc9peU7Lc1qe0/p8kZbntDyn5Tktz2l5TstzWp7T8pyW
57Q8p+U5Lc9peU7Lc1qe0/Kclue0PKflOS3PaXlOy/Nar6fw9x9oeU7Lc1qe
0/Kclue0PKflOS3PaXlOy3NantPynJbntDyn5Tktz2l5TstzWp7T8pyW57Q8
p/V5bq3jU9hzWp7T8pyW57Q8p+U5Lc9peU7Lc1qe0/Kclue0PKflOS3PaXlO
y3NantPynJbntDyn5Xmt11P4+ya0PKflOS3PaXlOy3NantPynJbntDyn5Tkt
z2l5TstzWp7T8pyW57Q8p+V5reNv2HNantPynJbn9P8D7MMXbQ==
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageMargins->0.,
ImageSize->{653., Automatic},
ImageSizeRaw->Automatic,
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 2.4990001}, {-0.979999959469, 3.31999993}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.8134115288324027`*^9, 3.813411677804079*^9,
3.8141326022804594`*^9},
CellLabel->"Out[14]=",ExpressionUUID->"fbc9e692-b833-416d-800b-f7ec8fff571a"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
LineBox[{{0., -20.18970108}, {0.493213385344, -24.18970108}, {
0.986426770687, -8.589699745}, {1.364690562442479, 0.}}],
LineBox[CompressedData["
1:eJxdm3dcFNfXxmdRRIPG3o2svcTeC7qrdAEVREFAdukddqkLC7toosZojFGj
MUbBxF5i/NkSozJGjbHE2BM1ulhiR40F0cDOO2dmeO5n3/zjZzIz9557znPO
99w7S5eYzOB4J47jaupxHP3bZkO/i4GXBQ2n/HfOyT5m9oF62h5H4nVHYwfz
L1Zsc1u93UVb+OhJeZ9TGn6SPpjbu9ZVe26tc8n3Fk9+z5J1trNLmmqv2avL
b+3y4hv0767POdJc+94Tc+fK/n345l//oJl9oKXWQ39Ddy2iA3+/j5t28e7W
uC+P31Z7ebLg5tvOl/+tZwf15g3tMZ48X0ftqOM1GrO/F7/mdT3ul5UfwJ5n
eW/E+d20k+acPjzvRF++V0u7rfKYWrnuyT89pxLt6aLdWFm/rGrFCH7nmxrb
u0NdYb/Pw1rRvm7K/J58za375S77u2P+y7/kTVi8u4f2m8+a64/GjuYjNmwt
b/VDT8X+/or9vbT3PgrRLhk0iD+dP2Zdly29teNyq2yt/tHyQeEZbps39FGu
vfgH/pnWAd/2Vebz5o/0s4vr+1Cxx5f3aTrEOnZ1P+3WNXbNkkEjePVzXlxv
f4y//9YRve/yAbg/7tjrm2eXDFT8M4l/FG4u3eo9COOHnp5YUXlskDK+N7/q
YKTbYI/ByrWHEq/Bin+G8X6dx5fu1wxRrofwexc7V7w7VHftzncVzqjHuw9V
5vPhA0saaGcfYNfdB7+xHhs1DPN3uNyCd9k/TPGfhv93bj3Of/hwxf5h/MkR
rzSLdw/Heg5fa1pyfvAIxGPFQo5v9cMIjD/jTLOK0AEjsZ4BxSr16u0jFf/6
8M4DXuhu9h2l2DuG/+98k7IuW0Zp141z5WbVDuMvzLHb4nqNVq7H8FuHPhPj
Mxr+L/3zPf3jbmNg/8Qez8V4jVH04M2PPOnKG9VjocemhTXCnrVjlflG8ff6
VmqqO7kr44/g/z7bsGTsanfl+Qn8buvbckv7cVjPlm6txfiOU+bz4v2N79yc
24xX7nvyXbs+1vkuH6/cn8C3+7VB2cIWGkX/IxX9a5T5RvF/Xa/HLXDRIr4e
w2pEPWgV/3jz4xu8pz0zV4v1bY1yEvWhRf612f/O2rT+BCUe4/nmCxqqB3vU
XY/ii25xfPCcCUo8x/EPRr/V5RyZgPXccXXhVnATEZ8pcYKop4nK+D78zwff
aK5a2H1ZXxOV8cbyXe7XWjvVTkS+faapchvv7oH1B39fXaoze2A9sv48MN5P
f9lt37710IZdFayfZk1V9Oip2DeRd6vnrL6X76msZwy/MKJWzHdP6PvN7te6
PlWeSrx9Fb16Kdc+/Kyb/5Wm5XhhvrAfGon1zAv+O9bQqWLnCy9lPi0/KPqd
9fxgb+ix79CG6pcGb9yX9e2tzejdUG/29+cj3jlpRzzzhj9PBP9nCx3gg+tf
ujcqKUj3gT9l/fsoehjHr7r8tvzgYx9lfe788k0u+pt9faEHqcin+CrvB/Bp
YdWlXbb4YvzEvg20Hg/qrr2VfPFT/O3Jj79eZZ2X4If4j95RX6zXfsr6xvMb
nGvLT971g56bR73WPe42SZnfi79y5o2tcewkjE//f8C3k+A/9ze1blNvTUK+
bJ5SVW5U+yM+6iuCbpnOH/eXHufE+umP/J/4uVB65YY/9LHHwmmrOwUo8/vw
cb6CrX1kAJ6/MpIT8zMAPJmnEtxmXQuA/qufC2K+BqIeJVdw+rKwQIzfYasg
HFkZiHz64KVgvXMlEOv5/Dandm4zGf7XbhfKe06fjHjtWs2J9Xyy8ryWj4kX
hOSLkxHfiyGcmO9TtB6NBXE+f/7jzoJmR9AUZX5f/nUTruLsEnadWMuVPP9j
ijLfRH76EkH4xGWqUh/G814RXEX7XlORD79aubKt3lOV5yfJ/kiou/bjQyM5
sV7UPe/HJ7bi1LM2TMV8D0dxYv2YivyU/HV3KtZT2JoraVo/CHpY8LugK+sW
BF65vhBEHgVhfMmfMUEY/5uzQnnwnCD4W/LvuiDM13+bINafuvsT+O//ENyc
bwXB/4fnC8KXXDD0LflfHYx6PjCfK9uvCUa+n/9E0Pnq6p734PlpnPaqJVjx
h5afaBLTZy27HzyIE+tX3ft+crxu1N335e805ko61QYjnnGDOe2OTtPAm5yH
gljfpsF+KZ4R07C+/CFcmc48Dfkz75Fgff41e79hU06sf9Pgn7YnBLcW16ZB
76seC2I9nAZ9bvlOKB/aPgT9Sd/fBLE+hmD+MSWCbnpYCPLj5/WC2738uutJ
/LZMjstfGQK9BMwWxPoZAr24B3BlX12pe96DP2zg9H2qQpCvujmC24HW05FP
UwI5sb5Ox/jnjRx/PWS6dlF/wfq9xZ+v6MOVpeXU3ffjYyZz+tpl06EXYwNO
rL919yfyL/tynNvFuvEn8k53BNvOF9NRbz524cq0LWYo9yfxy8oFsT7PwPyt
7wqamCB2v/s3gttLwwz4dyMv2D5aMgP5tdckiP3gDCX+HvzINYJ1wx917/vx
Px0RNCOesfF/KxDcTrwfivhNWiuI9T0U/h6TzPEPAkORL9cLBWtBeijy9bQX
p3/vM3Y/MIUT638o7I3synH9zoQiPje9Of7g41DkQ6VdKA10DUN+ZXbjRD6E
oT5ZrguazElh8KfMizCsv+mPgm3JgjBlvZP4L/4WRH6EgV8tVZz+f7+FIZ+6
/iRoPB6EQY/3Q4Zwl1xmKvaI/UmjhyJfZqLfmbajb9lr75nwz87oWyJvZip6
CODLnbtp286biXzreOCq2L/NhL/7RnWsGHV8Jvr3+S0uiDyaiXxdsa9lSXj9
cNx/mXJK5FM49OTUtLG6yCNcGS+Q95l2W+RVOPybkVifXzMnHPPv3nZN7A/D
sZ+4Vl6jKz8SDv13rn9R5Fk46o9Xu9dCBRcB/30aeVrkW4SyvkB+l6Gy1Ekb
gfmOtBqoX6aLQPw+OPmPprs1AvnTL72XyL8I1IcFXW7avA5HwL6vjruVXbkR
ofAjkH9dcMWaWFv3vj9fv3M7kY+RWL9fzFPhE/dI9DeGvGYV7SMjEZ+9B+6V
bjVHon7K/W0k9K1uadOcORCp/XWFoAktn8r79FKpZ12LRH1YlPqnrfItu5b7
4Vnop6uP/mFtOppdu/31r64sbBb0MKBoqHqwaZa2s0EQ5/fnFw56JPJ3Ftb3
9aUP+eD9s6BvWzunkjtXZmE+ab9TNev/9dtRqA9ZcztxK4ZH4fn9J1+IvI5C
P3nzRquy/TlR0Lvcn0fBn34jmmiv7o5CviwuvCPyPArrkfrdF1HoJ99duF66
sIUO70v97xCdsp4pfMKHl0Te6+BfqR82sucvfHRG7P91sP9Wr/fLdD+w64bu
g8R+QIf8kPrlZzrFfwFyvF30ynwBfNL6Z9agtnroT4p/Lz38ufSr/zS3R+jB
E0kP3nrw7lLNfbfsGXrYK+kjQQ9925+/tNXL06OeNzjaSuwv9NBfD+c2/PIv
9cgXST8b9NBjit8Ta4+9eujB2LGJ2H/oUe+Wj6vW7LvE5pP0dVePfPs5qIPa
55Ue/ruR7Sz2J9HgM7fiue3PltGox5L+ukXDH722tuCThkajH/M7Uyv2L+x+
2tMH1rfB0fC3pM+YaOTjMidX/adZ0Yj/3u5VYn8TDf8eqmqj7riUvS/pd100
9G4Pr8dt3xUNPnYpfir2P9FYf+8pTXn389Hwj6TvW2y+lN3/lf7+nNn72eV7
Yn8Ug/XQfiGqWQzGk/SvjsHzV1xfaZ4NjMH8Uj5oYuAvwkXJlBisV8oPXQzi
2/eVK98sMwb1XMoXCxv/3L7a0nWL2fXsYLuQvJaNN+SpXTfk+xjwRO6/YqCn
emc47dHfmf17ElViP8bWF1/PiQupjEE9lfebbD2037nbOBbjSf12p1j0q8MP
CKW5/dh1SA2nHu8ei/cbfKUqaRAQq036QtCZ/QP4/UOdxH4uFvbXN9ZqVqbG
wr59je3ifjYW8aZ/ey9k48n9Xiz8MWoeV/HjVvb+wy4qsf9j1w3jnHi/U7HI
vxnrasV+kL3vMs5uvfYwFvVN3i/HIh5/deD0qY3ikB8L9nH80PZxuD82WKWu
6R2H9TypVJUcGxWHerhmgVPFIt84zDcz3S72k3Gw571GQvkHSWx8ub9k1+la
ruT7+XHw76I5KrHfjIN/xnV20ms2sfnk/Xsc8pv2j+d+jVPyZQofOVoo/eoK
m7/JZUHQ34tDfZD70zj0K5mNVfy/zvHwZ5fNKvWB1vHQw98La0vn9IjH+hf3
sguThseDd5qjdl1Lr3jY/zxKKL8eEo/5m63jtOvj4lHfjrirxP42HvZn/aXi
hn/Mnu+e4yT2u/HQky3Ubjv+XTzi8cVLu2bxbnZN+98ZR+OR/3I/HI/63CJd
VXL/NhtfPq+IR7xy1ztpTU4J4N3RW7Wl2hYJiE9OsV1o2DUB+ST3zwnIR9pf
rpqQgHpWVcVpY4Lq3g/gNy1VlfWNToC+Y/Nqxf6aXbdqYbf+XMKeP77DLvbb
CbA330/QBJQloJ7J5ycJsJ94caOcPf/2F1XJhj+YvXTelW5LAP+qV9eK/Tmb
v+1Ne7ndngD/yf16Iq5pP/t550TE48NdXEXogESMP+mlSq8enwj91Cx2Evv5
RPiTeLFrFnv+XaJd7O8ToQfa/04oTsR65H4/Eeuh87cL3yRC//L5TyLiQ7yI
PZgIPayuqRU+PJOI/An4yq57dT0R/UntUKH84ONE8J/2z3P/Y/Odba4qC3RN
wnqsO1Rcm45J4NEgPydx/5CE9Vjm1ZZvHJMEHqz5zS7uJ5IQLzoPHBmeBPvk
/QUbn85Dfitg1+dvqCqWLGDjzylw0s5cxe4TL7psSUJ/QLx4+GMSeEO8+N9v
7H3iReFfSYg38cLjQRLWS7xwrWb3iReXXJIRD+LFN22T4T/5fCzZ4Xym/8hk
jEe8eO2djHwgXhyekQz9ES/mJbD3iReT85LBJ+JF23nsmnhh+5K9T/9/8wY2
H/HCsJfNR7wYdTxZWc8UiReqy+x54sXJu8noF4kXS18lQ+/Ei/D6KYreJ0u8
6NoqBfWQePG4Wwr8TbzYPTQF9ZV4UeTB7hMvPKelYP9AvGgcmwI9EC8uZ6Wg
nyderJmTgvUQLxKWpiAexIsB36ZAv8SLN7tSUI+IF+VHUpBfxIv55+uen6yc
NzL7iBft/k3B+okXFVyqYt9kiRdbmqVCf8QLozoV/TDxYsygVOQb8cJJm4p8
JV6cmpKK+YgXy3SpqM/Ei4jMVMSLeNHdmop8Il48WVx37SXxYu/aVOiHeFH8
fSr0S7zwOlxnj4/Ei/fPpiL+8nlpKuoZ8aK0MhX+Il4k1qZC78SLgU3SEB/i
RXWnNKyXeMH3S4O9xItP3NNQ/4gXQQFp0I90HhmZhv0r8eJ2KnufeLHVnAb/
Ey+yF6YhPsSLsavZ88SLetvSwH/ixZkD7D7xYvmpNPhP3p+mQX/Eix6P6tYT
KH8fecveJ17sa5SO+BMvLO3T4W/ihU+fdNQj6fxzNLsmXvzpmw5/EC/KwtId
eJGUlI54SfsLUzr8Tbx4Oz8d+pfPn9NxnkG8+HRTOvQkfa/Zn478JV50PJGO
eizvj9k18WLbvXTUF+JFThUbj3jh3iAD80nnrW0ysH7ixe892DXxYsXwDKyf
eBHllYH+iXjRc3oG9Eu8eBaXgXokfT/KYdfS/uLjDPRb8vl5Bvo34kWz9ex5
4sXV3RlYv7S/OMrml/YXFzOwP5f2F3cyHPcXLzLgD2l/4ZSJ/JD2Fy0ykR/S
/qJrJuIr7+czEU9pfzGh7tpLOc/PRH2Q9hfRmbBP2l8YM+FvaX8xOxM8kPYX
SzJRz6T9RVkm6pG0v/ghE3qX9hd8Jvwn7S/+yEQ+SfsLG5tP2l88y0Q8pf2F
kIn9w8Z+Km6Bi8FhPelNDdCTlO9tDchfWt9wNwP8JX+PMIAHtF77AAPOP6R6
MMKAeFx6YLf+Ot6AeOXesZdu9TZAP3M/FmyLJxuQT1/24NTZMwxYzwg1pw2N
MkAv3kfoe4cB63vwM1fmlmGAv6R6kmdw8N+DYgP8LdWXuQbEg/z5w2dsPqne
fGlA/pJ/TWuYffL5Rt34npK/J+wwQF8nWgrWHnsN0N+fe4TyRocMyCfTTsFW
ecwAvX8ylVNfOGNAfPv4c9p9lwzQ3+gnXMnXf7P5pPp114D9B/E95okBfJDq
2SsD6jPx/sMaA+qh/H3HCN4T/1+6GqE/qd61ZNfUDxzsaIR97Tzpe5AR9eXA
eMH68YdGxPeUTShPGmqEv1KvCbaAsUbsr8xmTj3Yw4j1LOyk0rf2N8K+fm1V
JW+DjVgP9RM3wo3Qm/y9yQh/Un+xMcUI/Un1NMuIeFC/kVHI5pO/hxuhn/CL
dmHEp0bU55rf7W4dlxrhP9dMQSesYuvdkUzfs4zg76H3OP7EFiP0c2Ybx23f
ZYT+MjZy6iU/GdEfWHzo9y1G5Bv1L2EnjchHqV6fNyK+1M+orxqRv/L3MrYe
6m8ePmDjSfX8uRF8pH5nVzWzJ9BuF77ksnD9rNruVtgwC/4TVgm6qGZZ8N/7
Y7myie2ylPE9+R+Gc3xPdRb2L/wVjnPtnYX6J/FgYBbso37p4sgs6Fn+fUEW
7KP+abVPFvwtn0dlQU/UT8WFMvskfuiyHPqrfons+diRKr5ZZhb2o9o+gvAq
Lwv+m3pK0Fy1MPteHBN0h+ZloV6pEriydYuzUJ+au6gq5q5g/tqtUnEpa7OQ
H9SfTd7I7JPPu9h6qV9rs4/5Tz7/ykJ+UP9mO54F/cnnYVnQw61Dduumy8y+
OT/aSxfeYPYtnSnYMv/Jgv6GhQjCtErmT4/XgmbU6yzk+7QV9H2T+e/1Eq6M
c87GfPWHqCruNs5GfhAvTrbKRv8rn69lYz3Eiy+6Z0Mv8nkbe594MXNYNuyT
z9+yHfrHrp7ZqJfEiwYB2chv4sWjaXXXnhIvzkZkw1/Ei92x2dhvEC9WpmYj
vsQLc3Y2/Ee80JmzoQ/ihcdH2dCPfJ7H3ideNF6WjXyXz/eyEV/ixaVvmT/k
875sB16s+R/zn3z+x8YnXsT/wvxHvPA7lY3+gnjR/wLzF/GixTUWL+JF1S32
PPHi2sNs1EvixeF/mf/k80PmP+LFfFUO8kM+T8yBfcSLKc1zMJ58vlh330/i
Rdsu7Hn5vDEH9hEvKgblQK/Ei2OjctBPEC82a3NgH/FikW8O7CNeGKfWXftJ
vJgeloPvW8SL0foc8FQ+r8xx6LdVhhzEVz6/ZPYSL05Zc1CP5PPMHOiPeLH0
c2Yf8SJvZY4DLyJKc1D/iBeaTex54kW3nWy9xAuX/TnQB/HiyWFmH/Hi3K/M
f8SLPWdzkE/y+SiLB/Gi6Cbzh3xeyuwjXng9ZfGVz0+ZfcSLJvYc1DP5PDUX
/iBeXG6SC/0RLw60zoX/iBdrP2DPEy/m9MhFfhAvEvrnIj+IF/7Dc6Ef4sXA
cbnwn3wemwv7iBdvAnKxXvl8Nhd8JF7wkbkOvFgfx+YjXnySlov8k89vc6EX
4sXUolz4j3gx7ONc6I140X5RLvoX4kXtMmYf8eLW6lzohXhx/Ltc+J94sXUb
s08+/2X+I15k/ZyL+MrnwbmoB8SLMafZfPL5MLOPeFHvei7qH/Hi/m32PPHi
9KNcxJd4sfNFLvor4sWyd8w+4oXJKQ/6I15EvpcH+4gX2hZ5iC/xonuHPPiP
eNGoax7sIV5U9slD/y6fP7PniRd7R+chHvJ5dB7sI15Y/PIceBETlAf/ES+8
Z+Yhn4gXfaPzoBfixfvJbD7ixUtD3fMyL/405UEfxIufS9j4xIvST/IQX/l8
Ow/9D/2b9FUe/Cefd7P3iReDNudBD/L5N7OPeFG9n9knn4fnod8kXhw5wfxJ
vNjwRx7iS7xY8Gce4ku8SLex+YgXwffzHHgx4hmbj3jR4Q1bv3yezuwjXtxu
kI/n5fP1fPQPxIttbfIRX/m8PR/2ES+ye+ajf5LP3/OR/8QL9xH58BfxQj2e
vU+8qO+dj/wjXjwIzIf+iBdnpjP7iBe7ZtXd95V48WV8PvKFeFGQno/6QLyY
lZsP/8nn+fmoL8SLnnPzEV/5fJ+9T7x4ujwf9VU+78+H/4gX+9bXje8p8WL1
9nz0I8QL6x5mL/Ei9iBbD/HC51i+w/6i35l8xJd40exSPvKDePHqOrOPePHX
nXzkh/z9IB/1hXhR9pL5W/6ekA/9ES+S65mQL/L3BROeJ14Mbmly2F+07miC
v4kX77qa4D/ixc2+7H3ixS9DTNAf8WLjGBPiS7xYONEE/8nfJ0ywn3gxLdgE
/cnfK0xYP/GiY4wJ8ZW/X5gQL+LFXaMJ/pO/Z5igR+LF9tls/NIB9HsqE+JL
vMj5ou55D4kXM1eZwHvixbh1zH/Eiy5b2PqJF867TIgv8eLRjybwkHhxlmf2
yd9H2PqIFyvOMf/J30uY/4gXugrmP/n7CbOPeNHruQn6I164VpugP+LFM8GE
+kG8uOhSgPUQL35sWuDAi2/aFmB9xIsStwLogXgR16sA9hEv/AYWwL7tT+h7
TAH8G1CfK2muKYB99Hu4194FsG9RG67i6uQC6It+n3l4RgH8R78P/DaK3d/z
n2Cdl8Dsm1EllKZksPXQ7zkn57H5b1QIbkMtzD7iRdt5BdAf/b71v88KoI/y
SqHU9iWzL8qZqzi6hs1v78SpN29g85W25bSLdjD/yd+D2Hw9nTg+5FAB6sWJ
GsE26ngBeES/7/3gd/Y8/b5UdZnZ/+yWYP3n77prH/7zt0L5ybvMvkGvBNuO
J8y+c66ceumrAuQH/V4zr6YA+mvemSsJr18I/9Hvh8c3LkS9oN+vdm1VCH2N
rsepXToVwj75+1Mh7Cde/PEhez/6gVC+e2gh9E2/B105thD58e07wa3IoxB6
n9CC0+v92X36/a7nNGYf8aJ3RCH0082Nq2gcy+yj3zP/m1IIf2xtxOkvZxWi
HyH9/VRYCN497sjxa+aw8S88FYTZnxYifqS/hKWFiC/9vnLS14XwH+lvwLds
vpCWHN9iKxt/7D1BqNpV6KC/6z8x/xVVC7ryI+w+6e+7k4XQH/Fi/nlmH/2+
NO1qIeoZ6W/qLeaPf54JumEPCxF/+r1tu3+ZfaS/mupC6O94e467xZnhH9Lf
8YZm1L/J9wXdlmbsPuXrZ+3MmI/0Z1SbYd+A5hw3o7fZQX9jBpmxnv03BV3n
UWbEl/LVSWuGfaS/ez5m5OPKhhx3eooZ+qJ83RlqdtDfMh27T/man8jmI/1F
ZJqhP8KFNt+M+FK+drey50l/Decz+3r/I5Q+Wczso3w9t4LZl/xGEPasNSN+
lK+rNjL7SH/F35vBU78uXFn0PuY/ylevw2YH/fX51Yz4Ur6+f9bsoL8Xl5l/
/9eOK7tyg81H+XrgHzPiS/pbW8mur9UKmo9eM39QvibWMv91bMaV+TsXIX8p
Xwc2KXLQX6vWRXifeFHdqQh6p3z9u3sR/Ef64/sVwX+Ur+uHFcF/pL8F7uya
eJHuyZ6nfA0KKALvSX/DQ4oQL+JF+0hmD+WrPbYI/iNe3E4tgr8pX3/NLnLQ
31Yzm494sfijIvCM8jV7IbuWvl8sY89Tvo5dXYT8IP25fVeEeka8qLeN2Uf5
+uB/7Jr0d+YA87f0/eKXIuiF8nX5qSIH/ZkuMHukvwe5VoT6R/qbcLsIeiBe
9HjE1kv52ugFixfpr/Its4fy9YKq2EF/+xoVw3/Ei6+bF6P+yX+fU+ygv5gu
xQ688OlTDHul7xeD2fPy99li6Jny9aW2GHog/f3pWwz9ES8OTi2GvZSvZWHF
8B/p72N9Mfwnfb9IKnbQX4ChGPkq/f2LqRj6p3xtXVJ330PS39v5xagXxIsb
nxeDv5SvR1Yy+0h/G0uZfZSvn24qhr9Jfxk7ixEP4kXwfuYPytcR5cwe0l/H
E8wfxAvhbLGD/u5cYeNJ3y9uFqNeUL5uv1fsoL8lT9n7xIucKrYeytcwe7GD
/twbWPA85WuX9y0O+nNuY4F9xIuHH1iwHsrX33tYoBfS367+FuiJeLFiuMUh
XwvHWeBP4kWUlwX2Ub5ODLSgHpD+ek5n9hEvXGdZEF/K12dxFtQ/0t/FNPY8
5ev+HIuD/lYXWaAn+Xu3xYEXcYuYfaQ/3+VsfOJFv2+YfZSvzdaz+YgXr7ZZ
HPL16m7mD9LfoZ/Z+MSLdUeZfZSvc09boCfSX/JFC+JL+Tr5OpuP9DfkDvMf
8aLNY2Yf5eu7FxYH/d18Z0E9I14cdbIi3pSvm96z4nnixcIWVviH8jWzgxX+
I/2FdLXCfun7RV8r7JX+PmuIFesh/XFjrNA/5evdCWw+0t9JPyvsJ17sCLJC
f5SvX8y0wn+kv9xoNj/xYmayFf6Q/v7LyOwh/XUtsMJ/lK8NZrPxSX+PPrHC
P/8H+zDcWQ==
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageMargins->0.,
ImageSize->{653., Automatic},
ImageSizeRaw->Automatic,
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 504.557281494}, {-66.989700317, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.8134115288324027`*^9, 3.813411677804079*^9,
3.8141326024834733`*^9},
CellLabel->"Out[15]=",ExpressionUUID->"4d52630a-9dd5-4fb4-b409-955d4ddbe8b2"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"waveforms", "=",
RowBox[{
"importData", "[",
"\"\<D:\\\\F20\\\\Nonlinear Optoelectronic Dynamics\\\\Week \
7\\\\BifurcationData\\\\\>\"", "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.813409511651546*^9, 3.8134095754869075`*^9}, {
3.8134096265336113`*^9, 3.8134096692226257`*^9}, {3.813409699280173*^9,
3.8134097011622677`*^9}, 3.8134103229802485`*^9},
CellLabel->"In[16]:=",ExpressionUUID->"e7bdc050-bc44-4318-a828-7397381314ea"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{"realBifurcationData", "[",
RowBox[{
RowBox[{
RowBox[{