-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRAG Scraper.py
348 lines (291 loc) · 13 KB
/
RAG Scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import customtkinter as ctk
import tkinter as tk
from tkinter import filedialog
import bs4 as bs
import requests
import configparser
import os
from langchain_community.document_loaders import WebBaseLoader, PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_ollama import OllamaEmbeddings
from langchain_chroma import Chroma
from langchain_ollama.llms import OllamaLLM
class RAGApp(ctk.CTk):
def __init__(self):
super().__init__()
self.title("RAG Scraper AI")
self.geometry("1000x800")
self.resizable(False, True)
# Initialize config
self.config_file = "settings.ini"
self.config = configparser.ConfigParser()
self.load_config()
# Configure grid
self.grid_columnconfigure(0, weight=1)
self.grid_rowconfigure(5, weight=1) # Updated to account for new frame
# Get available Ollama models
self.available_models = self.get_available_models()
# Loader type selection
self.loader_frame = ctk.CTkFrame(self)
self.loader_frame.grid(row=0, column=0, padx=10, pady=10, sticky="ew")
self.loader_label = ctk.CTkLabel(
self.loader_frame, text="Select Loader Type:")
self.loader_label.pack(side="left", padx=5)
saved_loader = self.config.get(
'Settings', 'loader_type', fallback="Web Loader")
self.loader_type = ctk.CTkOptionMenu(
self.loader_frame,
values=["Web Loader", "PDF Loader"],
command=self.on_loader_change
)
self.loader_type.set(saved_loader)
self.loader_type.pack(side="left", padx=5)
# Model selection frame
self.model_frame = ctk.CTkFrame(self)
self.model_frame.grid(row=1, column=0, padx=10, pady=10, sticky="ew")
# Base model selection
self.model_label = ctk.CTkLabel(
self.model_frame, text="Base Model:")
self.model_label.pack(side="left", padx=5)
saved_model = self.config.get(
'Settings', 'model_type', fallback="llama2")
self.model_type = ctk.CTkOptionMenu(
self.model_frame,
values=self.available_models if self.available_models else [
"llama2"],
command=self.on_model_change
)
self.model_type.set(saved_model if saved_model in (
self.available_models if self.available_models else ["llama2"]) else "llama2")
self.model_type.pack(side="left", padx=5)
# Embeddings model selection
self.embeddings_label = ctk.CTkLabel(
self.model_frame, text="Embeddings Model:")
self.embeddings_label.pack(side="left", padx=5)
saved_embeddings = self.config.get(
'Settings', 'embeddings_model', fallback="all-minilm")
self.embeddings_type = ctk.CTkOptionMenu(
self.model_frame,
values=self.available_models if self.available_models else [
"all-minilm"],
command=self.on_embeddings_change
)
self.embeddings_type.set(saved_embeddings if saved_embeddings in (
self.available_models if self.available_models else ["all-minilm"]) else "all-minilm")
self.embeddings_type.pack(side="left", padx=5)
# Source frames
# PDF frame
self.pdf_frame = ctk.CTkFrame(self)
self.pdf_frame.grid(row=2, column=0, padx=10, pady=10, sticky="ew")
self.pdf_label = ctk.CTkLabel(self.pdf_frame, text="PDF Source:")
self.pdf_label.pack(side="left", padx=5)
self.pdf_entry = ctk.CTkEntry(self.pdf_frame, width=400)
self.pdf_entry.pack(side="left", padx=5, fill="x", expand=True)
self.browse_button = ctk.CTkButton(
self.pdf_frame,
text="Browse",
command=self.browse_file
)
self.browse_button.pack(side="right", padx=5)
self.pdf_frame.grid_remove() # Hidden by default
# Web frame for URLs and BS4 strainer
self.web_frame = ctk.CTkFrame(self)
self.web_frame.grid(row=2, column=0, padx=10, pady=10, sticky="ew")
self.web_frame.grid_columnconfigure(1, weight=1)
# URLs section
self.url_label = ctk.CTkLabel(
self.web_frame, text="URLs (one per line):")
self.url_label.grid(row=0, column=0, padx=5, pady=5, sticky="nw")
self.url_text = ctk.CTkTextbox(self.web_frame, width=400, height=100)
self.url_text.grid(row=1, column=0, columnspan=2,
padx=5, pady=5, sticky="ew")
# BS4 strainer section
self.bs4_label = ctk.CTkLabel(
self.web_frame, text="BS4 Strainer Class(enter class name of the element of your target page to narrow down the context area):")
self.bs4_label.grid(row=2, column=0, padx=5, pady=5, sticky="w")
self.bs4_entry = ctk.CTkEntry(self.web_frame, width=200)
self.bs4_entry.grid(row=2, column=1, padx=5, pady=5, sticky="ew")
self.bs4_entry.insert(0, "") # Default value
# Question frame
self.question_frame = ctk.CTkFrame(self)
self.question_frame.grid(
row=3, column=0, padx=10, pady=10, sticky="ew") # Updated row position
self.question_label = ctk.CTkLabel(
self.question_frame, text="Question:")
self.question_label.pack(side="left", padx=5)
self.question_entry = ctk.CTkEntry(self.question_frame, width=400)
self.question_entry.pack(side="left", padx=5, fill="x", expand=True)
# Process button
self.process_button = ctk.CTkButton(
self.question_frame,
text="ASK AI",
command=self.process_query
)
self.process_button.pack(side="right", padx=5)
# Answer text area
self.answer_frame = ctk.CTkFrame(self)
self.answer_frame.grid(row=4, column=0, padx=10,
pady=10, sticky="nsew")
self.answer_frame.grid_columnconfigure(0, weight=1)
self.answer_frame.grid_rowconfigure(1, weight=1)
self.answer_label = ctk.CTkLabel(self.answer_frame, text="Answer:")
self.answer_label.grid(row=0, column=0, padx=5, pady=5, sticky="w")
self.answer_text = ctk.CTkTextbox(
self.answer_frame, width=900, height=400)
self.answer_text.grid(row=1, column=0, padx=5, pady=5, sticky="nsew")
if self.loader_type.get() == "PDF Loader":
# set all pdf loader element to shown and hide all web loader elements
self.pdf_frame.grid()
self.web_frame.grid_remove()
else:
# set all web loader elements to shown and hide all pdf loader elements
self.pdf_frame.grid_remove()
self.web_frame.grid()
def load_config(self):
"""Load settings from config file"""
if os.path.exists(self.config_file):
self.config.read(self.config_file)
if 'Settings' not in self.config:
self.config['Settings'] = {
'loader_type': 'Web Loader',
'model_type': 'llama2',
'embeddings_model': 'all-minilm'
}
self.save_config()
def save_config(self):
"""Save current settings to config file"""
with open(self.config_file, 'w') as configfile:
self.config.write(configfile)
def get_available_models(self):
try:
response = requests.get(
'http://localhost:11434/api/tags', timeout=5) # Add timeout
if response.status_code == 200:
models = response.json()
return [model['name'] for model in models['models']]
self.show_warning(
"Ollama API Error", "Could not fetch models from Ollama API. Please make sure Ollama is running.")
return []
except requests.exceptions.RequestException as e:
self.show_warning(
"Ollama API Error", "Could not connect to Ollama API. Please make sure Ollama is running.")
print(f"Error fetching models: {str(e)}")
return []
def show_warning(self, title, message):
warning_window = ctk.CTkToplevel(self)
warning_window.title(title)
warning_window.geometry("400x150")
warning_window.transient(self) # Set to be on top of the main window
# Center the window
warning_window.update_idletasks()
x = self.winfo_x() + (self.winfo_width() // 2) - \
(warning_window.winfo_width() // 2)
y = self.winfo_y() + (self.winfo_height() // 2) - \
(warning_window.winfo_height() // 2)
warning_window.geometry(f"+{x}+{y}")
# Add message
label = ctk.CTkLabel(warning_window, text=message, wraplength=350)
label.pack(padx=20, pady=20)
# Add OK button
ok_button = ctk.CTkButton(
warning_window, text="OK", command=warning_window.destroy)
ok_button.pack(pady=10)
# Make the window modal
warning_window.grab_set()
def on_loader_change(self, choice):
if choice == "PDF Loader":
self.web_frame.grid_remove()
self.pdf_frame.grid()
else:
self.pdf_frame.grid_remove()
self.web_frame.grid()
# Save the new choice
self.config['Settings']['loader_type'] = choice
self.save_config()
def on_model_change(self, choice):
self.selected_model = choice
# Save the new choice
self.config['Settings']['model_type'] = choice
self.save_config()
def on_embeddings_change(self, choice):
self.selected_embeddings = choice
# Save the new choice
self.config['Settings']['embeddings_model'] = choice
self.save_config()
def browse_file(self):
filename = filedialog.askopenfilename(
filetypes=[("PDF files", "*.pdf")]
)
if filename:
self.pdf_entry.delete(0, tk.END)
self.pdf_entry.insert(0, filename)
def process_query(self):
try:
# Clear previous answer
self.answer_text.delete("0.0", tk.END)
self.answer_text.insert("0.0", "Processing...\n")
self.update()
# Get loader type and question
loader_type = self.loader_type.get()
question = self.question_entry.get()
selected_model = self.model_type.get() # Get the selected model
# Get the selected embeddings model
selected_embeddings = self.embeddings_type.get()
# Initialize loader based on type
if loader_type == "Web Loader":
# Get URLs from text area (split by newlines and remove empty lines)
urls = [url.strip() for url in self.url_text.get(
"0.0", tk.END).split('\n') if url.strip()]
if not urls:
raise ValueError("Please enter at least one URL")
# Get BS4 strainer class
strainer_class = self.bs4_entry.get().strip()
if not strainer_class:
strainer_class = None
bs4_strainger = bs.SoupStrainer(class_=strainer_class)
loader = WebBaseLoader(
web_paths=urls,
bs_kwargs={"parse_only": bs4_strainger}
)
else:
pdf_path = self.pdf_entry.get().strip()
if not pdf_path:
raise ValueError("Please select a PDF file")
loader = PyMuPDFLoader(pdf_path)
# Process documents
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1200,
chunk_overlap=100,
add_start_index=True
)
all_splits = text_splitter.split_documents(docs)
# Create vectorstore with selected embeddings model
local_embeddings = OllamaEmbeddings(model=selected_embeddings)
vectorstore = Chroma.from_documents(
documents=all_splits,
embedding=local_embeddings
)
# Retrieve relevant documents
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 3}
)
retrieved_docs = retriever.invoke(question)
context = ' '.join([doc.page_content for doc in retrieved_docs])
# Generate response using selected model
llm = OllamaLLM(model=selected_model)
response = llm.invoke(
f"Answer the question according to the context: \nQuestion: {
question}\n Context: {context}"
)
# Display response
self.answer_text.delete("0.0", tk.END)
self.answer_text.insert("0.0", response)
except Exception as e:
self.answer_text.delete("0.0", tk.END)
self.answer_text.insert("0.0", f"Error: {str(e)}")
if __name__ == "__main__":
app = RAGApp()
app.after(0, lambda:app.state('zoomed'))
app.mainloop()