-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscoring.py
executable file
·500 lines (417 loc) · 23.7 KB
/
scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#!/usr/bin/env python
import sys
import csv
import optparse
import time
def main():
loggen = Log_File_Generation()
loggen.log_clean()
start_time = time.time()
print 'Process started at ', start_time
opts = get_opts()
match_scores = collect(opts)
print 'Data Collection Complete'
# print match_scores
assert(match_scores != [])
team_scores = match_consolidation(match_scores, opts)
#print mean_scores
Scoring = DataScoring()
weighted_scores = Scoring.summation(team_scores, opts)
print 'Data Scoring Complete'
#print weighted_scores
Latex = DataFormat(opts)
Latex.latex_writer(weighted_scores, opts)
print 'Latex Generation Complete'
end_time = time.time()
print 'Process Completed at ', end_time
print 'Duration = ', end_time - start_time
def collect(opts):
Collection = DataCollection()
scores = []
for number in range(1,2):
filename = 'data' + str(number) + '.csv'
in_file = open(filename, 'r')
data = csv.reader(in_file, delimiter=',')
for row in data:
if Collection.data_assurance(row, opts):
scores.append(row)
in_file.close()
sorted_scores = sorted(scores, key=lambda score : int(score[0]))
if opts.visual == True:
print 'Bad Row Count = ', Collection.bad_count
return sorted_scores
class DataCollection: # Turn into function
def __init__(self):
self.bad_count = 0
def data_assurance(self, row, opts):
loggen = Log_File_Generation()
item_count = 0
for item in row:
item_count += 1
if item_count not in [1,2,13]:
try:
if int(item) > 10:
error = 'ERROR 1: Data issue, field range'
self.bad_count += 1
loggen.logfile.write(error + str(row) + '\n')
if opts.visual == True:
print error, row
return False
elif int(item) < 1:
error = 'ERROR 2: Data issue, field range'
loggen.logfile.write(error + str(row) + '\n')
self.bad_count += 1
if opts.visual == True:
print error, row
return False
except ValueError:
error = 'ERROR 3: Data issue, alpha-characters'
loggen.logfile.write(error + str(row) + '\n')
self.bad_count += 1
if opts.visual == True:
print error, row
return False
if item_count != 13:
error = 'ERROR 4: Data issue, too many fields'
loggen.logfile.write(error + str(row) + '\n')
self.bad_count += 1
if opts.visual == True:
print error, row
return False
elif item_count == 13:
return True
def match_consolidation(scores, opts):
''' Gets raw input scores and returns a list that contains just 1 row
per team with average scores.
'''
Average = DataAverage()
sorted_teams = Average.seperator(scores, opts)
consolidated_scores = Average.mean(sorted_teams, opts)
assert(len(consolidated_scores[1]) == 12)
if opts.visual == True:
print consolidated_scores
return consolidated_scores
class DataAverage:
def seperator(self, scores, opts):
''' Restructures data by team:
<example>
and describe
'''
team_array = []
sorted_teams = []
for item in scores:
if team_array == []:
team_array.append(item)
elif item[0] == team_array[0][0]:
team_array.append(item)
else:
sorted_teams.append(team_array)
team_array = []
sorted_teams.append(team_array)
if opts.visual == True:
print sorted_teams
return sorted_teams
def mean(self, sorted_teams, opts):
''' Returns one row per team with fields that are averages of inputs.
Input description: blahblah
Output desc: blahfoobar
'''
mean_scores = []
for team in sorted_teams:
self.total_matches = len(team)
self.y_count = 1.0
self.n_count = 1.0
mean_team = [team[0][0]]
for field in range(2, 13):
total = 0
for match in team:
if field == 12:
self.win_ratio(match)
else:
weighted_field = self.weight_number(match, field, opts)
total += weighted_field
if field == 12:
ratio = round(100 *(self.y_count / (self.y_count + self.n_count)), 2)
mean_team.append(ratio)
else:
mean_team.append(total)
if opts.visual == True:
print mean_team
mean_scores.append(mean_team)
return mean_scores
def win_ratio(self, match):
if match[12].lower() in ['y', 'yes', 'tie']:
self.y_count += 1.0
elif match[12] in ['n', 'no']:
self.n_count += 1.0
def weight_number(self, match, field, opts):
''' For weighting a certain process needs to be done
Find standard mean gap
Find match range
Find the percent increase per match
Multiply match number by the percent increase by the percent
Essentially want the middle (50) to be multiplied by 1, match 1 by 0.8, 100 by 1.2
'''
match_percent = 1.0 / self.total_matches #this provides the gap, 1.0/5 = .20
match_range = opts.match / 2 #provides range
match_number = int(match[1])
field_weight_score = self.field_weight(match_range, match_number, opts)
weighting_percent = field_weight_score * match_percent
if opts.visual == True:
print 'weight ', field_weight_score, 'number ', match_number
return round(weighting_percent * int(match[field]), 2)
def field_weight(self, match_range, match_number, opts):
if (0 < match_number < match_range):
match = match_number
percent_increase = opts.weight - ((opts.weight * match_number) / match_range)
return 1.0 - percent_increase
elif match_number == match_range:
return 1.0
elif (match_range < match_number < ((2 * match_range) + 1)): #this works
match = match_number - match_range
percent_increase = (opts.weight * match) / match_range
return 1.0 + percent_increase
class DataScoring:
def __init__(self):
self.sub_auto = 1
self.sub_agility = 2
self.sub_speed = 3
self.sub_bump = 4
self.sub_bridge = 6
self.sub_dunk = 7
self.sub_assist = 8
self.sub_acquire = 9
self.sub_strat = 10
self.sub_balance = 5
def summation(self, team_scores, opts):
for team in team_scores:
maneuver_score = self.maneuverability(team)
defense_score = self.defensive(team, maneuver_score)
offense_score = self.offensive(team, maneuver_score)
collaborate_score = self.collaboration(team)
final_score = self.final_scoring(team, defense_score, offense_score, collaborate_score, opts)
team.append(maneuver_score)
team.append(defense_score)
team.append(offense_score)
team.append(collaborate_score)
team.append(final_score)
return team_scores
def maneuverability(self, team_score):
agility = team_score[self.sub_agility] * 0.4
speed = team_score[self.sub_speed] * 0.4
bump = team_score[self.sub_bump] * 0.1
bridge = team_score[self.sub_bridge] * 0.1
maneuver_score = sum([agility, speed, bump, bridge])
return maneuver_score
def defensive(self, team_score, maneuver_score):
strategy = team_score[self.sub_strat] * 0.5
man = maneuver_score * 0.5
defense_score = sum([strategy, man])
return defense_score
def offensive(self, team_score, maneuver_score):
dunk = team_score[self.sub_dunk] * 0.2
assist = team_score[self.sub_assist] * 0.1
acquisition = team_score[self.sub_acquire] * 0.1
strategy = team_score[self.sub_strat] * 0.3
maneuver = maneuver_score * 0.3
offense_score = sum([dunk, assist, acquisition, strategy, maneuver])
return offense_score
def collaboration(self, team_score):
bridge = team_score[self.sub_bridge] * 0.3
balance = team_score[self.sub_balance] * 0.7
collaborate_score = sum([bridge, balance])
return collaborate_score
def final_scoring(self, team_score, defense_score, offense_score, collaborate_score, opts):
defense = defense_score * opts.defense
offense = offense_score * opts.offense
collaborate = collaborate_score * opts.collaborate
auto = team_score[self.sub_auto] * opts.auto
final_score = sum([defense, offense, collaborate, auto])
return round(final_score,3)
class DataFormat:
def __init__(self, opts):
self.number = '''The number of the team in question.\\\ '''
self.auto = '''The team's Autonomous score. This score is calculated based on how many points they score, how consistent the robot is, and how effective their autonomous mode is. Since the maximum amount of points that can be scored during autonomous is 12 points, scoring a 12 is equivalent to a 10. No robot movement is worth a 1, and then scores are assigned based off these two extremes.\\\ '''
self.agility = '''How agile the robot is, how fast is it at turning, how easy is it to travel across the field? A 1 would be a robot that barely moves, or it doesn't. A robot with a 10 would be nimble and travel across the field very easily. \\\ '''
self.speed = '''How fast is the robot compared to the others? A 1 would be a robot that doesn't move at all. A 10 would be a robot that is the fastest robot at the competition. One that is much faster than anything else on the field. \\\ '''
self.bump = '''Can the robot cross the bump? If so, how fast and how effective is the robot at crossing? A 1 would be a robot that can not cross the bump, while a 10 would be a robot that can cross the bump at the same speed that it normally travels. \\\ '''
self.balance = '''Over all the matches, on average, how effective is the robot at balancing? A 1 would be a robot that is completely unable to balance, it falls off the bridge, or slides, or just is too imprecise to ever balance. A 10 would be a robot that can just slide to the exact spot where it needs to be without any additional correction. \\\ '''
self.bridge = '''Over all the matches, on average, how effective is the robot at crossing the bridge? This category includes lowering the bridge, as well as the actual transportation over it. A 1 would be a robot that can not lower the bridge on its own, and then is unable to climb up it. A 10 would be a robot that can quickly lower the bridge and then cross over it quickly and effectively. \\\ '''
self.dunk = '''Over all the matches, on average, how effective is the robot's scoring method? A 1 would be a robot that is completely unable to score at all. A 10 would be a robot that can score from any spot on the field, and make 100\\% of the shots in the top basket. \\\ '''
self.assist = '''How effective is the robot at assisting other robots in scoring? A 1 would be a robot that can not assist its team mates in scoring (maybe its range is very limited). A 10 would be one in which it can effectively place a ball into its team mates acquisition system from any spot on the field. \\\ '''
self.acquisition = '''Over all the matches, on average, how effective is the robot's acquisition system? A 1 would be a robot that either doesn't possess an acquisition system, or maybe it's broken. A 10 would be a robot that can pick up only 3 balls quickly and be able to automatically prevent any fouling. \\\ '''
self.strategy = '''Over all the matches, on average, how effective is the overall team strategy? A 1 would be a robot that either just sat there, rammed itself into the wall, or fouled hundreds of points in a single round. A 10 would be a robot that always is in the right place, either scoring or assisting, or balancing. \\\ '''
self.win = '''Win to Loss ratio. This number is in percent. \\\ '''
self.maneuver = '''This score is comprised of four scores, the agility score is 40\\%, the bridge score is 10\\%, the bump score is 10\\%, and the speed score is 40\\%.\\\ '''
self.offense = '''This score is comprised of five scores, the acquisition score is 10\\%, the assist score is 10\\%, the strategy is 30\\%, the dunk score is 20\\%, and the maneuverability score is 30\\%.\\\ '''
self.defense = '''This score is comprised of two scores, the strategy and maneuverability score, both of which make up 50\\%.\\\ '''
self.final_score = '''Over all the matches, on average, how good is the robot? This number is determined through a scoring algorithm that takes each score into account. This score is comprised of the four section scores, weighting is: defense = %f, offense = %f, collaboration = %f, and autonomous = %f. \\\ ''' % (opts.defense, opts.offense, opts.collaborate, opts.auto)
self.team_number = [0, 'By Team']
self.win_number = [11, 'By Win Ratio']
self.maneuver_number = [12, 'By Maneuverability Score']
self.defense_number = [13, 'By Defensive Score']
self.offense_number = [14, 'By Offensive Score']
self.collaborate_number = [15, 'By Collaboration Score']
self.final_score_number = [16, 'By Final Score']
self.print_list = [self.team_number, self.win_number, self.maneuver_number, self.defense_number, self.offense_number ,self.collaborate_number, self.final_score_number]
def latex_writer(self, mean_scores, opts):
out_file = open('out_file.tex', 'w')
out_file.write('\\documentclass[landscape, 10pt]{report} \n \n')
out_file.write('\\usepackage{fullpage} \n')
out_file.write('\\usepackage[top=0.75in, bottom=0.75in, left=0.25in, right=0.25in]{geometry} \n')
out_file.write('\\usepackage{times} \n \n')
out_file.write('\\usepackage{pdfpages} \n \n')
out_file.write('\\usepackage{longtable} \n \n')
out_file.write('\\usepackage{endnotes} \n \n')
out_file.write('\\usepackage{xcolor,colortbl} \n \n')
out_file.write('\\begin{document} \n')
out_file.write("\\title{Scoring Results\\endnote{\\large{If you reference this report, please note that the scouting system is inherently subjective. Therefore any results are prone to error and opinion. Any team that uses Team 2945's report to make decisions realizes that Team 2945 is not liable for any mistakes made in choosing alliance members.}}} \n")
out_file.write('\\author{Team 2945} \n')
out_file.write('\\maketitle \n \n')
out_file.write('\\begin{abstract} \n')
out_file.write('\\large This program was created in order to accurately measure FIRST robotics teams effectiveness, not game scoring capabilities, as an aid to choose alliance members. This is measured through subjective scoring by individuals on ten categories entered into an excel spreadsheet exported to a .csv file. Once exported, the program is run to create a scoring analysis report. Inherent subjectivity is mitigated through documented scoring criteria and a large data pool to work with for each team.\\\ \n \\large The first step is data organization and cleansing to reduce error and format the data. Each match is weighted based on the chronological order of the match to account for teams improving as time goes on, and then the initial ten scores reported by the scouting team are used to generate four main scores, in offensive, defensive, collaborative, and autonomous capabilities. These are then run through another weighted averaging process to create a final score for each team. Once this is complete, the scoring report is written in Latex, and then compiled to PDF. \n')
out_file.write('\\end{abstract} \n')
out_file.write('\\begin{center} \n')
out_file.write('Final Score weighting is: defense = %2.0f\\%% , offense = %2.0f\\%%, collaboration = %2.0f\\%%, and autonomous = %2.0f\\%%. \\\ \n' % (opts.defense * 100, opts.offense * 100, opts.collaborate * 100, opts.auto * 100))
out_file.write('Alternate weighting upon request. \n ')
out_file.write('\\end{center} \n \n')
out_file.write("\\section*{Scores} \n")
self.write_field(out_file, mean_scores, opts)
out_file.write('\\pagebreak \n \n \\section*{Score Information} \n')
out_file.write('\\large \n \n')
out_file.write('\\textbf{Number: }' + self.number + '\n')
out_file.write('\\textbf{Auto: }' + self.auto + '\n')
out_file.write('\\textbf{Agility: }' + self.agility + '\n')
out_file.write('\\textbf{Speed: }' + self.speed + '\n')
out_file.write('\\textbf{Bump: }' + self.bump + '\n')
out_file.write('\\textbf{Balance: }' + self.balance + '\n')
out_file.write('\\textbf{Bridge: }' + self.bridge + '\n')
out_file.write('\\textbf{Dunk: }' + self.dunk + '\n')
out_file.write('\\textbf{Assist: }' + self.assist + '\n')
out_file.write('\\textbf{Acquire: }' + self.acquisition + '\n')
out_file.write('\\textbf{Strategy: }' + self.strategy + '\n')
out_file.write('\\textbf{Win: }' + self.win + '\n')
out_file.write('\\textbf{Maneuver: }' + self.maneuver + '\n')
out_file.write('\\textbf{Offense: }' + self.offense + '\n')
out_file.write('\\textbf{Defense: }' + self.defense + '\n')
out_file.write('\\textbf{Final Score: }' + self.final_score + '\n')
out_file.write('\\includepdf[pages={1}]{scoring_system.pdf} \n')
out_file.write('\\theendnotes \n')
out_file.write('\\end{document}')
out_file.close()
def write_field(self, out_file, mean_scores, opts):
if opts.report == 'all':
for field in self.print_list:
sorted_scores = sorted(mean_scores, key=lambda score : float(score[field[0]]))
sorted_scores.reverse()
out_file.write('\\subsection*{' + str(field[1]) + '} \n')
out_file.write('\n\\begin{longtable}{l || l || l | l | l | l | l | l | l | l | l | l | l || l | l | l | l | l} \n')
out_file.write('\\# & Team & Auto & Agility & Speed & Bump & Balance & Bridge & Dunk & Assist & Acquire & Strategy & Win (\\%) & Maneuver & Defense & Offense & Collaborate & Final Score \\\ \\hline \\endhead \n')
row_count = 2
number = 1
for row in sorted_scores:
self.row_writer(row, out_file, row_count, number)
row_count += 1
number += 1
out_file.write('\end{longtable} \n \n')
out_file.write('\\pagebreak')
elif opts.report == 'final':
sorted_scores = sorted(mean_scores, key=lambda score : float(score[self.print_list[6][0]]))
sorted_scores.reverse()
out_file.write('\\subsection*{' + str(self.print_list[6][1]) + '} \n')
out_file.write('\n\\begin{longtable}{l || l || l | l | l | l | l | l | l | l | l | l | l || l | l | l | l | l} \n')
out_file.write('\\# & Team & Auto & Agility & Speed & Bump & Balance & Bridge & Dunk & Assist & Acquire & Strategy & Win (\\%) & Maneuver & Defense & Offense & Collaborate & Final Score \\\ \\hline \\endhead \n')
row_count = 2
number = 1
for row in sorted_scores:
self.row_writer(row, out_file, row_count, number)
row_count += 1
number += 1
out_file.write('\end{longtable} \n \n')
out_file.write('\\pagebreak')
def row_writer(self, row, out_file, row_count, number):
item_count = 1
if (row_count % 2) == 0:
out_file.write('\\rowcolor{lightgray}')
out_file.write(str(number) + ' & ')
for item in row:
out_file.write(str(item))
if item_count != 17:
out_file.write(' & ')
item_count += 1
out_file.write('\\\ \n')
class Log_File_Generation:
def __init__(self):
self.logfile = open('logfile.txt', mode='a')
def log_clean(self):
clean = open('logfile.txt', mode='w')
clean.close()
def get_opts():
global opts
global args
parser = optparse.OptionParser(usage = 'Usage = %prog <options>', version = 'Version 1.0')
parser.add_option('-d', '--defense',
action='store',
type='float',
default=0.3,
help='Weighting for defensive score')
parser.add_option('-o', '--offense',
action='store',
type='float',
default=0.3,
help='Weighting for defensive score')
parser.add_option('-c', '--collaborate',
action='store',
type='float',
default=0.2,
help='Weighting for defensive score')
parser.add_option('-a', '--auto',
action='store',
type='float',
default=0.2,
help='Weighting for defensive score')
parser.add_option('-m', '--match',
action='store',
type='int',
default=100,
help='How many matches were played total')
parser.add_option('-w', '--weight',
action='store',
type='float',
default=0.2,
help='The degree of match weighting')
parser.add_option('-v', '--visual',
action='store',
type='int',
default=0,
help='Debug mode, visual commands')
parser.add_option('-r', '--report',
action='store',
type='string',
default='all',
help='Type of report')
opts, args = parser.parse_args()
if (sum([opts.defense, opts.offense, opts.collaborate, opts.auto])) != 1:
print "ERROR 5: Options must add up to 1"
print opts.defense, opts.offense, opts.collaborate, opts.auto
sys.exit(0)
if (0 > opts.weight > 1):
print "ERROR 6: Weight argument must be between 0 and 1"
print opts.weight
sys.exit(0)
if opts.visual not in [True, False]:
print "ERROR 7: Visual must be 0 or 1"
print opts.visual
sys.exit(0)
if opts.visual == 0:
opts.visual = False
elif opts.visual == 1:
opts.visual = True
type_list = ['all', 'final']
if opts.report not in type_list:
print 'ERROR 9: Report must be in ', type_list
print opts.report
sys.exit(0)
return opts
if __name__ == "__main__":
sys.exit(main())