|
| 1 | +""" |
| 2 | +Illustrate how to implement inorder traversal in binary search tree. |
| 3 | +Author: Gurneet Singh |
| 4 | +https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/ |
| 5 | +""" |
| 6 | + |
| 7 | + |
| 8 | +class BinaryTreeNode: |
| 9 | + """Defining the structure of BinaryTreeNode""" |
| 10 | + |
| 11 | + def __init__(self, data: int) -> None: |
| 12 | + self.data = data |
| 13 | + self.left_child: BinaryTreeNode | None = None |
| 14 | + self.right_child: BinaryTreeNode | None = None |
| 15 | + |
| 16 | + |
| 17 | +def insert(node: BinaryTreeNode | None, new_value: int) -> BinaryTreeNode | None: |
| 18 | + """ |
| 19 | + If the binary search tree is empty, make a new node and declare it as root. |
| 20 | + >>> node_a = BinaryTreeNode(12345) |
| 21 | + >>> node_b = insert(node_a, 67890) |
| 22 | + >>> node_a.left_child == node_b.left_child |
| 23 | + True |
| 24 | + >>> node_a.right_child == node_b.right_child |
| 25 | + True |
| 26 | + >>> node_a.data == node_b.data |
| 27 | + True |
| 28 | + """ |
| 29 | + if node is None: |
| 30 | + node = BinaryTreeNode(new_value) |
| 31 | + return node |
| 32 | + |
| 33 | + # binary search tree is not empty, |
| 34 | + # so we will insert it into the tree |
| 35 | + # if new_value is less than value of data in node, |
| 36 | + # add it to left subtree and proceed recursively |
| 37 | + if new_value < node.data: |
| 38 | + node.left_child = insert(node.left_child, new_value) |
| 39 | + else: |
| 40 | + # if new_value is greater than value of data in node, |
| 41 | + # add it to right subtree and proceed recursively |
| 42 | + node.right_child = insert(node.right_child, new_value) |
| 43 | + return node |
| 44 | + |
| 45 | + |
| 46 | +def inorder(node: None | BinaryTreeNode) -> list[int]: # if node is None,return |
| 47 | + """ |
| 48 | + >>> inorder(make_tree()) |
| 49 | + [6, 10, 14, 15, 20, 25, 60] |
| 50 | + """ |
| 51 | + if node: |
| 52 | + inorder_array = inorder(node.left_child) |
| 53 | + inorder_array = inorder_array + [node.data] |
| 54 | + inorder_array = inorder_array + inorder(node.right_child) |
| 55 | + else: |
| 56 | + inorder_array = [] |
| 57 | + return inorder_array |
| 58 | + |
| 59 | + |
| 60 | +def make_tree() -> BinaryTreeNode | None: |
| 61 | + |
| 62 | + root = insert(None, 15) |
| 63 | + insert(root, 10) |
| 64 | + insert(root, 25) |
| 65 | + insert(root, 6) |
| 66 | + insert(root, 14) |
| 67 | + insert(root, 20) |
| 68 | + insert(root, 60) |
| 69 | + return root |
| 70 | + |
| 71 | + |
| 72 | +def main() -> None: |
| 73 | + # main function |
| 74 | + root = make_tree() |
| 75 | + print("Printing values of binary search tree in Inorder Traversal.") |
| 76 | + inorder(root) |
| 77 | + |
| 78 | + |
| 79 | +if __name__ == "__main__": |
| 80 | + import doctest |
| 81 | + |
| 82 | + doctest.testmod() |
| 83 | + main() |
0 commit comments