diff --git a/Project-Euler/Problem044.js b/Project-Euler/Problem044.js index 04d531d569..e2530da7ef 100644 --- a/Project-Euler/Problem044.js +++ b/Project-Euler/Problem044.js @@ -8,37 +8,57 @@ * It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 − 22 = 48, is not pentagonal. * Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference are pentagonal and D = |Pk − Pj| is minimised; what is the value of D? * - * @author ddaniel27 + * @author utkarsh-shrivastav77 */ -function problem44 (k) { - if (k < 1) { +function getPentagonalNumber(n) { + return n * (3 * n - 1) / 2; +} + +// The function takes a limit parameter that determines the maximum pentagonal number to consider. It first defines a getPentagonalNumber function to calculate the nth pentagonal number using the given formula. + +function findMinPentagonalDifference(limit) { + + if (limit < 1) { throw new Error('Invalid Input') } - while (true) { - k++ - const n = k * (3 * k - 1) / 2 // calculate Pk + // Then, it initializes two arrays: pentagonalNumbers to store the pentagonal numbers and pentagonalIndices to store their indices. We use a Set for pentagonalIndices to ensure that checking if a number is pentagonal is O(1) on average. + + const pentagonalNumbers = []; + const pentagonalIndices = new Set(); + + // The function then iterates over all pairs of indices in pentagonalNumbers and checks if their sum and difference are also pentagonal. If they are, it checks if the difference D is smaller than the current minimum difference minD. If it is, it updates minD to the new minimum value and minPair to the corresponding pair of pentagonal numbers. + + for (let i = 1; i <= limit; i++) { + const pentagonalNumber = getPentagonalNumber(i); + pentagonalNumbers.push(pentagonalNumber); + pentagonalIndices.add(pentagonalNumber); + } + + let minD = Infinity; + let minPair; - for (let j = k - 1; j > 0; j--) { - const m = j * (3 * j - 1) / 2 // calculate all Pj < Pk - if (isPentagonal(n - m) && isPentagonal(n + m)) { // Check sum and difference - return n - m // return D + for (let j = 1; j < pentagonalNumbers.length; j++) { + for (let k = j + 1; k < pentagonalNumbers.length; k++) { + const sum = pentagonalNumbers[j] + pentagonalNumbers[k]; + const diff = pentagonalNumbers[k] - pentagonalNumbers[j]; + if (pentagonalIndices.has(sum) && pentagonalIndices.has(diff)) { + if (diff < minD) { + minD = diff; + minPair = [pentagonalNumbers[j], pentagonalNumbers[k]]; + } } } } + + return minD; } -/** - * Function to check if a number is pentagonal or not - * This function solves n - * applying the solution for a quadratic function - * @see {@link https://en.wikipedia.org/wiki/Quadratic_function} - */ +// You can call the function like this to find the minimum difference between a pair of pentagonal numbers whose sum and difference are also pentagonal up to the pentagonal number limit of 10000 + + +export { findMinPentagonalDifference } + -function isPentagonal (n) { - const pent = (Math.sqrt(24 * n + 1) + 1) / 6 - return pent === Math.floor(pent) -} -export { problem44 }