|
| 1 | +/** |
| 2 | + * Function to find the median of two sorted arrays without merging them. |
| 3 | + * This algorithm efficiently uses binary search on the smaller array to achieve O(log(min(n, m))) complexity. |
| 4 | + * Sample Problem : https://leetcode.com/problems/median-of-two-sorted-arrays/description/ |
| 5 | + * |
| 6 | + * Approach: |
| 7 | + * 1. Ensure nums1 is the smaller array to reduce the number of binary search operations. |
| 8 | + * 2. Use binary search to partition both arrays so that elements on the left are less than or equal to elements on the right. |
| 9 | + * 3. Based on the combined array length, find the median directly by averaging or picking the middle element. |
| 10 | + * |
| 11 | + * Time Complexity: O(log(min(n, m))) - where n and m are the lengths of the two arrays. |
| 12 | + * Space Complexity: O(1) - only a constant amount of space is used. |
| 13 | + * |
| 14 | + * Examples: |
| 15 | + * nums1 = [1, 3], nums2 = [2] |
| 16 | + * The combined array would be [1, 2, 3] and the median is 2. |
| 17 | + * |
| 18 | + * nums1 = [1, 2], nums2 = [3, 4] |
| 19 | + * The combined array would be [1, 2, 3, 4] and the median is (2 + 3) / 2 = 2.5. |
| 20 | + * |
| 21 | + * @param {number[]} nums1 - First sorted array. |
| 22 | + * @param {number[]} nums2 - Second sorted array. |
| 23 | + * @returns {number} - The median of the two sorted arrays. |
| 24 | + * @throws Will throw an error if the input arrays are not sorted or valid for median calculation. |
| 25 | + */ |
| 26 | +export function findMedianSortedArraysWithoutMerging(nums1, nums2) { |
| 27 | + // Checks if array are sorted or not |
| 28 | + const isSorted = (arr) => { |
| 29 | + for (let i = 1; i < arr.length; i++) { |
| 30 | + if (arr[i] < arr[i - 1]) return false; |
| 31 | + } |
| 32 | + return true; |
| 33 | + }; |
| 34 | + |
| 35 | + if (!isSorted(nums1) || !isSorted(nums2)) { |
| 36 | + throw new Error("Input arrays are not sorted or valid for median calculation."); |
| 37 | + } |
| 38 | + |
| 39 | + //First ensure nums1 is the smaller array |
| 40 | + if (nums1.length > nums2.length) { |
| 41 | + [nums1, nums2] = [nums2, nums1]; |
| 42 | + } |
| 43 | + |
| 44 | + const x = nums1.length; |
| 45 | + const y = nums2.length; |
| 46 | + let low = 0, high = x; |
| 47 | + |
| 48 | + while (low <= high) { |
| 49 | + const partitionX = Math.floor((low + high) / 2); |
| 50 | + const partitionY = Math.floor((x + y + 1) / 2) - partitionX; |
| 51 | + |
| 52 | + // Edge values in case of partitions at boundaries |
| 53 | + const maxX = partitionX === 0 ? -Infinity : nums1[partitionX - 1]; |
| 54 | + const minX = partitionX === x ? Infinity : nums1[partitionX]; |
| 55 | + |
| 56 | + const maxY = partitionY === 0 ? -Infinity : nums2[partitionY - 1]; |
| 57 | + const minY = partitionY === y ? Infinity : nums2[partitionY]; |
| 58 | + |
| 59 | + // Check if partition is correct |
| 60 | + if (maxX <= minY && maxY <= minX) { |
| 61 | + // Correct partition found, calculate median |
| 62 | + const leftMax = Math.max(maxX, maxY); |
| 63 | + const rightMin = Math.min(minX, minY); |
| 64 | + |
| 65 | + if ((x + y) % 2 === 0) { |
| 66 | + return (leftMax + rightMin) / 2; |
| 67 | + } else { |
| 68 | + return leftMax; |
| 69 | + } |
| 70 | + } else if (maxX > minY) { |
| 71 | + // Move towards left in nums1 |
| 72 | + high = partitionX - 1; |
| 73 | + } else { |
| 74 | + // Move towards right in nums1 |
| 75 | + low = partitionX + 1; |
| 76 | + } |
| 77 | + } |
| 78 | +} |
0 commit comments