Skip to content

Commit 65cdc7a

Browse files
committed
feat/Find Median of Two Sorted Arrays Without Merging
1 parent 78ce39a commit 65cdc7a

File tree

2 files changed

+116
-0
lines changed

2 files changed

+116
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,78 @@
1+
/**
2+
* Function to find the median of two sorted arrays without merging them.
3+
* This algorithm efficiently uses binary search on the smaller array to achieve O(log(min(n, m))) complexity.
4+
* Sample Problem : https://leetcode.com/problems/median-of-two-sorted-arrays/description/
5+
*
6+
* Approach:
7+
* 1. Ensure nums1 is the smaller array to reduce the number of binary search operations.
8+
* 2. Use binary search to partition both arrays so that elements on the left are less than or equal to elements on the right.
9+
* 3. Based on the combined array length, find the median directly by averaging or picking the middle element.
10+
*
11+
* Time Complexity: O(log(min(n, m))) - where n and m are the lengths of the two arrays.
12+
* Space Complexity: O(1) - only a constant amount of space is used.
13+
*
14+
* Examples:
15+
* nums1 = [1, 3], nums2 = [2]
16+
* The combined array would be [1, 2, 3] and the median is 2.
17+
*
18+
* nums1 = [1, 2], nums2 = [3, 4]
19+
* The combined array would be [1, 2, 3, 4] and the median is (2 + 3) / 2 = 2.5.
20+
*
21+
* @param {number[]} nums1 - First sorted array.
22+
* @param {number[]} nums2 - Second sorted array.
23+
* @returns {number} - The median of the two sorted arrays.
24+
* @throws Will throw an error if the input arrays are not sorted or valid for median calculation.
25+
*/
26+
export function findMedianSortedArraysWithoutMerging(nums1, nums2) {
27+
// Checks if array are sorted or not
28+
const isSorted = (arr) => {
29+
for (let i = 1; i < arr.length; i++) {
30+
if (arr[i] < arr[i - 1]) return false;
31+
}
32+
return true;
33+
};
34+
35+
if (!isSorted(nums1) || !isSorted(nums2)) {
36+
throw new Error("Input arrays are not sorted or valid for median calculation.");
37+
}
38+
39+
//First ensure nums1 is the smaller array
40+
if (nums1.length > nums2.length) {
41+
[nums1, nums2] = [nums2, nums1];
42+
}
43+
44+
const x = nums1.length;
45+
const y = nums2.length;
46+
let low = 0, high = x;
47+
48+
while (low <= high) {
49+
const partitionX = Math.floor((low + high) / 2);
50+
const partitionY = Math.floor((x + y + 1) / 2) - partitionX;
51+
52+
// Edge values in case of partitions at boundaries
53+
const maxX = partitionX === 0 ? -Infinity : nums1[partitionX - 1];
54+
const minX = partitionX === x ? Infinity : nums1[partitionX];
55+
56+
const maxY = partitionY === 0 ? -Infinity : nums2[partitionY - 1];
57+
const minY = partitionY === y ? Infinity : nums2[partitionY];
58+
59+
// Check if partition is correct
60+
if (maxX <= minY && maxY <= minX) {
61+
// Correct partition found, calculate median
62+
const leftMax = Math.max(maxX, maxY);
63+
const rightMin = Math.min(minX, minY);
64+
65+
if ((x + y) % 2 === 0) {
66+
return (leftMax + rightMin) / 2;
67+
} else {
68+
return leftMax;
69+
}
70+
} else if (maxX > minY) {
71+
// Move towards left in nums1
72+
high = partitionX - 1;
73+
} else {
74+
// Move towards right in nums1
75+
low = partitionX + 1;
76+
}
77+
}
78+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
import { findMedianSortedArraysWithoutMerging } from '../findMedianSortedArraysWithoutMerging';
2+
3+
describe('findMedianSortedArrays', () => {
4+
it('should find the median of two sorted arrays of equal length', () => {
5+
expect(findMedianSortedArraysWithoutMerging([1, 3], [2, 4])).toBe(2.5);
6+
expect(findMedianSortedArraysWithoutMerging([1, 2], [3, 4])).toBe(2.5);
7+
});
8+
9+
it('should find the median when arrays have different lengths', () => {
10+
expect(findMedianSortedArraysWithoutMerging([1, 3], [2])).toBe(2);
11+
expect(findMedianSortedArraysWithoutMerging([1, 2, 3], [4, 5])).toBe(3);
12+
});
13+
14+
it('should find the median when one array is empty', () => {
15+
expect(findMedianSortedArraysWithoutMerging([], [1])).toBe(1);
16+
expect(findMedianSortedArraysWithoutMerging([], [1, 2, 3])).toBe(2);
17+
});
18+
19+
it('should handle single element arrays', () => {
20+
expect(findMedianSortedArraysWithoutMerging([1], [2])).toBe(1.5);
21+
expect(findMedianSortedArraysWithoutMerging([1], [2, 3, 4])).toBe(2.5);
22+
});
23+
24+
it('should handle arrays with duplicate elements', () => {
25+
expect(findMedianSortedArraysWithoutMerging([1, 2, 2], [2, 3, 4])).toBe(2);
26+
expect(findMedianSortedArraysWithoutMerging([1, 1, 1], [1, 1, 1])).toBe(1);
27+
});
28+
29+
it('should throw an error if the arrays are not sorted', () => {
30+
expect(() => findMedianSortedArraysWithoutMerging([3, 1], [2, 4])).toThrow('Input arrays are not sorted or valid for median calculation.');
31+
expect(() => findMedianSortedArraysWithoutMerging([1, 3, 5], [4, 2])).toThrow('Input arrays are not sorted or valid for median calculation.');
32+
});
33+
34+
it('should work for larger arrays', () => {
35+
expect(findMedianSortedArraysWithoutMerging([1, 2, 3, 6, 8], [4, 5, 7, 9])).toBe(5);
36+
expect(findMedianSortedArraysWithoutMerging([1, 5, 8, 10], [3, 7, 9, 11, 12])).toBe(8);
37+
});
38+
});

0 commit comments

Comments
 (0)