@@ -136,7 +136,7 @@ class DenseLayer {
136
136
* @param neurons number of neurons
137
137
* @param activation activation function for layer
138
138
* @param kernel_shape shape of kernel
139
- * @param random_kernel flag for whether to intialize kernel randomly
139
+ * @param random_kernel flag for whether to initialize kernel randomly
140
140
*/
141
141
DenseLayer (const int &neurons, const std::string &activation,
142
142
const std::pair<size_t , size_t > &kernel_shape,
@@ -502,7 +502,7 @@ class NeuralNetwork {
502
502
auto start =
503
503
std::chrono::high_resolution_clock::now (); // Start clock
504
504
double loss = 0 ,
505
- acc = 0 ; // Intialize performance metrics with zero
505
+ acc = 0 ; // Initialize performance metrics with zero
506
506
// For each starting index of batch
507
507
for (size_t batch_start = 0 ; batch_start < X.size ();
508
508
batch_start += batch_size) {
@@ -515,7 +515,7 @@ class NeuralNetwork {
515
515
// They will be averaged and applied to kernel
516
516
std::vector<std::vector<std::valarray<double >>> gradients;
517
517
gradients.resize (this ->layers .size ());
518
- // First intialize gradients to zero
518
+ // First initialize gradients to zero
519
519
for (size_t i = 0 ; i < gradients.size (); i++) {
520
520
zeroes_initialization (
521
521
gradients[i], get_shape (this ->layers [i].kernel ));
@@ -606,7 +606,7 @@ class NeuralNetwork {
606
606
void evaluate (const std::vector<std::vector<std::valarray<double >>> &X,
607
607
const std::vector<std::vector<std::valarray<double >>> &Y) {
608
608
std::cout << " INFO: Evaluation Started" << std::endl;
609
- double acc = 0 , loss = 0 ; // intialize performance metrics with zero
609
+ double acc = 0 , loss = 0 ; // initialize performance metrics with zero
610
610
for (size_t i = 0 ; i < X.size (); i++) { // For every sample in input
611
611
// Get predictions
612
612
std::vector<std::valarray<double >> pred =
0 commit comments