Skip to content

Commit 86531a8

Browse files
author
nlpzhezhao
committed
update readme
1 parent 6feab42 commit 86531a8

File tree

2 files changed

+5
-7
lines changed

2 files changed

+5
-7
lines changed

README.md

+3-4
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,6 @@ TencentPretrain has the following features:
4444
* argparse
4545
* packaging
4646
* regex
47-
* For the mixed precision training you will need apex from NVIDIA
4847
* For the pre-trained model conversion (related with TensorFlow) you will need TensorFlow
4948
* For the tokenization with sentencepiece model you will need [SentencePiece](https://github.com/google/sentencepiece)
5049
* For developing a stacking model you will need LightGBM and [BayesianOptimization](https://github.com/fmfn/BayesianOptimization)
@@ -135,7 +134,7 @@ The above content provides basic ways of using TencentPretrain to pre-process, p
135134
<br/>
136135

137136
## Pre-training data
138-
This section provides links to a range of :arrow_right: [__pre-training data__](https://github.com/Tencent/TencentPretrain/wiki/Pretraining-data) :arrow_left: .
137+
This section provides links to a range of :arrow_right: [__pre-training data__](https://github.com/Tencent/TencentPretrain/wiki/Pretraining-data) :arrow_left: . TencentPretrain can load these pre-training data directly.
139138

140139
<br/>
141140

@@ -145,7 +144,7 @@ This section provides links to a range of :arrow_right: [__downstream datasets__
145144
<br/>
146145

147146
## Modelzoo
148-
With the help of TencentPretrain, we pre-trained models of different properties (e.g. models based on different modalities, encoders, and targets). Detailed introduction of pre-trained models and their download links can be found in :arrow_right: [__modelzoo__](https://github.com/Tencent/TencentPretrain/wiki/Modelzoo) :arrow_left: . All pre-trained models can be loaded by TencentPretrain directly. More pre-trained models will be released in the future.
147+
With the help of TencentPretrain, we pre-trained models of different properties (e.g. models based on different modalities, encoders, and targets). Detailed introduction of pre-trained models and their download links can be found in :arrow_right: [__modelzoo__](https://github.com/Tencent/TencentPretrain/wiki/Modelzoo) :arrow_left: . All pre-trained models can be loaded by TencentPretrain directly.
149148

150149
<br/>
151150

@@ -183,7 +182,7 @@ TencentPretrain/
183182
184183
```
185184

186-
The code is well-organized. Users can use and extend upon it with little efforts.
185+
The code is organized based on components (e.g. embeddings, encoders). Users can use and extend upon it with little efforts.
187186

188187
Comprehensive examples of using TencentPretrain can be found in :arrow_right: [__instructions__](https://github.com/Tencent/TencentPretrain/wiki/Instructions) :arrow_left: , which help users quickly implement pre-training models such as BERT, GPT-2, ELMo, T5, CLIP and fine-tune pre-trained models on a range of downstream tasks.
189188

README_ZH.md

+2-3
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,6 @@ TencentPretrain有如下几方面优势:
4141
* argparse
4242
* packaging
4343
* regex
44-
* 如果使用混合精度,需要安装英伟达的apex
4544
* 如果涉及到TensorFlow模型的转换,需要安装TensorFlow
4645
* 如果在tokenizer中使用sentencepiece模型,需要安装[SentencePiece](https://github.com/google/sentencepiece)
4746
* 如果使用模型集成stacking,需要安装LightGBM和[BayesianOptimization](https://github.com/fmfn/BayesianOptimization)
@@ -132,7 +131,7 @@ python3 inference/run_classifier_infer.py --load_model_path models/finetuned_mod
132131
<br>
133132

134133
## 预训练数据
135-
我们提供了链接,指向一系列开源的 :arrow_right: [__预训练数据__](https://github.com/Tencent/TencentPretrain/wiki/预训练数据) :arrow_left:
134+
我们提供了链接,指向一系列开源的 :arrow_right: [__预训练数据__](https://github.com/Tencent/TencentPretrain/wiki/预训练数据) :arrow_left:TencentPretrain可以直接加载这些预训练数据。
136135

137136
<br>
138137

@@ -142,7 +141,7 @@ python3 inference/run_classifier_infer.py --load_model_path models/finetuned_mod
142141
<br>
143142

144143
## 预训练模型仓库
145-
借助TencentPretrain,我们训练不同性质的预训练模型(例如基于不同模态、编码器、目标任务)。用户可以在 :arrow_right: [__预训练模型仓库__](https://github.com/Tencent/TencentPretrain/wiki/预训练模型仓库) :arrow_left: 中找到各种性质的预训练模型以及它们对应的描述和下载链接。所有预训练模型都可以由TencentPretrain直接加载。将来我们会发布更多的预训练模型。
144+
借助TencentPretrain,我们训练不同性质的预训练模型(例如基于不同模态、编码器、目标任务)。用户可以在 :arrow_right: [__预训练模型仓库__](https://github.com/Tencent/TencentPretrain/wiki/预训练模型仓库) :arrow_left: 中找到各种性质的预训练模型以及它们对应的描述和下载链接。所有预训练模型都可以由TencentPretrain直接加载。
146145

147146
<br>
148147

0 commit comments

Comments
 (0)