-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathEquation.jl
327 lines (276 loc) · 12.1 KB
/
Equation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
module EquationModule
import ..OperatorEnumModule: AbstractOperatorEnum
import ..UtilsModule: @memoize_on, @with_memoize, deprecate_varmap, Undefined
const DEFAULT_NODE_TYPE = Float32
"""
AbstractNode
Abstract type for binary trees. Must have the following fields:
- `degree::Integer`: Degree of the node. Either 0, 1, or 2. If 1,
then `l` needs to be defined as the left child. If 2,
then `r` also needs to be defined as the right child.
- `l::AbstractNode`: Left child of the current node. Should only be
defined if `degree >= 1`; otherwise, leave it undefined (see the
the constructors of `Node{T}` for an example).
Don't use `nothing` to represent an undefined value
as it will incur a large performance penalty.
- `r::AbstractNode`: Right child of the current node. Should only
be defined if `degree == 2`.
"""
abstract type AbstractNode end
"""
AbstractExpressionNode{T} <: AbstractNode
Abstract type for nodes that represent an expression.
Along with the fields required for `AbstractNode`,
this additionally must have fields for:
- `constant::Bool`: Whether the node is a constant.
- `val::T`: Value of the node. If `degree==0`, and `constant==true`,
this is the value of the constant. It has a type specified by the
overall type of the `Node` (e.g., `Float64`).
- `feature::UInt16`: Index of the feature to use in the
case of a feature node. Only used if `degree==0` and `constant==false`.
Only defined if `degree == 0 && constant == false`.
- `op::UInt8`: If `degree==1`, this is the index of the operator
in `operators.unaops`. If `degree==2`, this is the index of the
operator in `operators.binops`. In other words, this is an enum
of the operators, and is dependent on the specific `OperatorEnum`
object. Only defined if `degree >= 1`
```
"""
abstract type AbstractExpressionNode{T} <: AbstractNode end
#! format: off
"""
Node{T} <: AbstractExpressionNode{T}
Node defines a symbolic expression stored in a binary tree.
A single `Node` instance is one "node" of this tree, and
has references to its children. By tracing through the children
nodes, you can evaluate or print a given expression.
# Fields
- `degree::UInt8`: Degree of the node. 0 for constants, 1 for
unary operators, 2 for binary operators.
- `constant::Bool`: Whether the node is a constant.
- `val::T`: Value of the node. If `degree==0`, and `constant==true`,
this is the value of the constant. It has a type specified by the
overall type of the `Node` (e.g., `Float64`).
- `feature::UInt16`: Index of the feature to use in the
case of a feature node. Only used if `degree==0` and `constant==false`.
Only defined if `degree == 0 && constant == false`.
- `op::UInt8`: If `degree==1`, this is the index of the operator
in `operators.unaops`. If `degree==2`, this is the index of the
operator in `operators.binops`. In other words, this is an enum
of the operators, and is dependent on the specific `OperatorEnum`
object. Only defined if `degree >= 1`
- `l::Node{T}`: Left child of the node. Only defined if `degree >= 1`.
Same type as the parent node.
- `r::Node{T}`: Right child of the node. Only defined if `degree == 2`.
Same type as the parent node. This is to be passed as the right
argument to the binary operator.
# Constructors
## Leafs
Node(; val=nothing, feature::Union{Integer,Nothing}=nothing)
Node{T}(; val=nothing, feature::Union{Integer,Nothing}=nothing) where {T}
Create a leaf node: either a constant, or a variable.
- `::Type{T}`, optionally specify the type of the
node, if not already given by the type of
`val`.
- `val`, if you are specifying a constant, pass
the value of the constant here.
- `feature::Integer`, if you are specifying a variable,
pass the index of the variable here.
You can also create a leaf node from variable names:
Node(; var_string::String, variable_names::Array{String,1})
Node{T}(; var_string::String, variable_names::Array{String,1}) where {T}
## Unary operator
Node(op::Integer, l::Node)
Apply unary operator `op` (enumerating over the order given in `OperatorEnum`)
to `Node` `l`.
## Binary operator
Node(op::Integer, l::Node, r::Node)
Apply binary operator `op` (enumerating over the order given in `OperatorEnum`)
to `Node`s `l` and `r`.
"""
mutable struct Node{T} <: AbstractExpressionNode{T}
degree::UInt8 # 0 for constant/variable, 1 for cos/sin, 2 for +/* etc.
constant::Bool # false if variable
val::Union{T,Nothing} # If is a constant, this stores the actual value
# ------------------- (possibly undefined below)
feature::UInt16 # If is a variable (e.g., x in cos(x)), this stores the feature index.
op::UInt8 # If operator, this is the index of the operator in operators.binops, or operators.unaops
l::Node{T} # Left child node. Only defined for degree=1 or degree=2.
r::Node{T} # Right child node. Only defined for degree=2.
#################
## Constructors:
#################
Node(d::Integer, c::Bool, v::_T) where {_T} = new{_T}(UInt8(d), c, v)
Node(::Type{_T}, d::Integer, c::Bool, v::_T) where {_T} = new{_T}(UInt8(d), c, v)
Node(::Type{_T}, d::Integer, c::Bool, v::Nothing, f::Integer) where {_T} = new{_T}(UInt8(d), c, v, UInt16(f))
Node(d::Integer, c::Bool, v::Nothing, f::Integer, o::Integer, l::Node{_T}) where {_T} = new{_T}(UInt8(d), c, v, UInt16(f), UInt8(o), l)
Node(d::Integer, c::Bool, v::Nothing, f::Integer, o::Integer, l::Node{_T}, r::Node{_T}) where {_T} = new{_T}(UInt8(d), c, v, UInt16(f), UInt8(o), l, r)
end
"""
GraphNode{T} <: AbstractExpressionNode{T}
Exactly the same as `Node{T}`, but with the assumption that some
nodes will be shared. All copies of this graph-like structure will
be performed with this assumption, to preserve structure of the graph.
# Examples
```julia
julia> operators = OperatorEnum(;
binary_operators=[+, -, *], unary_operators=[cos, sin]
);
julia> x = GraphNode(feature=1)
x1
julia> y = sin(x) + x
sin(x1) + {x1}
julia> cos(y) * y
cos(sin(x1) + {x1}) * {(sin(x1) + {x1})}
```
Note how the `{}` indicates a node is shared, and this
is the same node as seen earlier in the string.
This has the same constructors as `Node{T}`. Shared nodes
are created simply by using the same node in multiple places
when constructing or setting properties.
"""
mutable struct GraphNode{T} <: AbstractExpressionNode{T}
degree::UInt8 # 0 for constant/variable, 1 for cos/sin, 2 for +/* etc.
constant::Bool # false if variable
val::Union{T,Nothing} # If is a constant, this stores the actual value
# ------------------- (possibly undefined below)
feature::UInt16 # If is a variable (e.g., x in cos(x)), this stores the feature index.
op::UInt8 # If operator, this is the index of the operator in operators.binops, or operators.unaops
l::GraphNode{T} # Left child node. Only defined for degree=1 or degree=2.
r::GraphNode{T} # Right child node. Only defined for degree=2.
#################
## Constructors:
#################
GraphNode(d::Integer, c::Bool, v::_T) where {_T} = new{_T}(UInt8(d), c, v)
GraphNode(::Type{_T}, d::Integer, c::Bool, v::_T) where {_T} = new{_T}(UInt8(d), c, v)
GraphNode(::Type{_T}, d::Integer, c::Bool, v::Nothing, f::Integer) where {_T} = new{_T}(UInt8(d), c, v, UInt16(f))
GraphNode(d::Integer, c::Bool, v::Nothing, f::Integer, o::Integer, l::GraphNode{_T}) where {_T} = new{_T}(UInt8(d), c, v, UInt16(f), UInt8(o), l)
GraphNode(d::Integer, c::Bool, v::Nothing, f::Integer, o::Integer, l::GraphNode{_T}, r::GraphNode{_T}) where {_T} = new{_T}(UInt8(d), c, v, UInt16(f), UInt8(o), l, r)
end
################################################################################
#! format: on
constructorof(::Type{N}) where {N<:AbstractNode} = Base.typename(N).wrapper
constructorof(::Type{<:Node}) = Node
constructorof(::Type{<:GraphNode}) = GraphNode
function with_type_parameters(::Type{N}, ::Type{T}) where {N<:AbstractExpressionNode,T}
return constructorof(N){T}
end
with_type_parameters(::Type{<:Node}, ::Type{T}) where {T} = Node{T}
with_type_parameters(::Type{<:GraphNode}, ::Type{T}) where {T} = GraphNode{T}
"""Trait declaring whether nodes share children or not."""
preserve_sharing(::Type{<:AbstractNode}) = false
preserve_sharing(::Type{<:Node}) = false
preserve_sharing(::Type{<:GraphNode}) = true
include("base.jl")
function (::Type{N})(
::Type{T}=Undefined; val::T1=nothing, feature::T2=nothing
) where {T,T1,T2<:Union{Integer,Nothing},N<:AbstractExpressionNode}
((T1 <: Nothing) ⊻ (T2 <: Nothing)) || error(
"You must specify exactly one of `val` or `feature` when creating a leaf node."
)
Tout = compute_value_output_type(N, T, T1)
if T2 <: Nothing
if !(T1 <: T)
# Only convert if not already in the type union.
val = convert(Tout, val)
end
return constructorof(N)(Tout, 0, true, val)
else
return constructorof(N)(Tout, 0, false, nothing, feature)
end
end
function (::Type{N})(
op::Integer, l::AbstractExpressionNode{T}
) where {T,N<:AbstractExpressionNode}
@assert l isa N
return constructorof(N)(1, false, nothing, 0, op, l)
end
function (::Type{N})(
op::Integer, l::AbstractExpressionNode{T1}, r::AbstractExpressionNode{T2}
) where {T1,T2,N<:AbstractExpressionNode}
@assert l isa N && r isa N
# Get highest type:
if T1 != T2
T = promote_type(T1, T2)
# TODO: This might slow things down
l = convert(with_type_parameters(N, T), l)
r = convert(with_type_parameters(N, T), r)
end
return constructorof(N)(2, false, nothing, 0, op, l, r)
end
function (::Type{N})(var_string::String) where {N<:AbstractExpressionNode}
Base.depwarn(
"Creating a node using a string is deprecated and will be removed in a future version.",
:string_tree,
)
return N(; feature=parse(UInt16, var_string[2:end]))
end
function (::Type{N})(
var_string::String, variable_names::Array{String,1}
) where {N<:AbstractExpressionNode}
i = findfirst(==(var_string), variable_names)::Int
return N(; feature=i)
end
@inline function compute_value_output_type(
::Type{N}, ::Type{T}, ::Type{T1}
) where {N<:AbstractExpressionNode,T,T1}
!(N isa UnionAll) &&
T !== Undefined &&
error(
"Ambiguous type for node. Please either use `Node{T}(; val, feature)` or `Node(T; val, feature)`.",
)
if T === Undefined && N isa UnionAll
if T1 <: Nothing
return DEFAULT_NODE_TYPE
else
return T1
end
elseif T === Undefined
return eltype(N)
else
return T
end
end
function Base.promote_rule(::Type{Node{T1}}, ::Type{Node{T2}}) where {T1,T2}
return Node{promote_type(T1, T2)}
end
function Base.promote_rule(::Type{GraphNode{T1}}, ::Type{Node{T2}}) where {T1,T2}
return GraphNode{promote_type(T1, T2)}
end
function Base.promote_rule(::Type{GraphNode{T1}}, ::Type{GraphNode{T2}}) where {T1,T2}
return GraphNode{promote_type(T1, T2)}
end
Base.eltype(::Type{<:AbstractExpressionNode{T}}) where {T} = T
Base.eltype(::AbstractExpressionNode{T}) where {T} = T
# TODO: Verify using this helps with garbage collection
create_dummy_node(::Type{N}) where {N<:AbstractExpressionNode} = N(; feature=zero(UInt16))
"""
set_node!(tree::AbstractExpressionNode{T}, new_tree::AbstractExpressionNode{T}) where {T}
Set every field of `tree` equal to the corresponding field of `new_tree`.
"""
function set_node!(tree::AbstractExpressionNode, new_tree::AbstractExpressionNode)
# First, ensure we free some memory:
if new_tree.degree < 2 && tree.degree == 2
tree.r = create_dummy_node(typeof(tree))
end
if new_tree.degree < 1 && tree.degree >= 1
tree.l = create_dummy_node(typeof(tree))
end
tree.degree = new_tree.degree
if new_tree.degree == 0
tree.constant = new_tree.constant
if new_tree.constant
tree.val = new_tree.val::eltype(new_tree)
else
tree.feature = new_tree.feature
end
else
tree.op = new_tree.op
tree.l = new_tree.l
if new_tree.degree == 2
tree.r = new_tree.r
end
end
return nothing
end
end