1
- import math
2
1
import os
3
2
import time
4
- from collections import OrderedDict
5
3
6
- import numpy as np
7
4
import torch
8
5
import torch .nn as nn
9
- import torch .nn .functional as F
10
6
import torch .optim as optim
11
7
import torchvision
12
- import torchvision .transforms as transforms
13
- from ray import tune
14
8
from torchvision import datasets , transforms
15
9
16
10
import workloads .common as com
@@ -26,41 +20,41 @@ def __init__(self):
26
20
super (VGG , self ).__init__ ()
27
21
self .conv = nn .Sequential (
28
22
# Stage 1
29
- # TODO: convolutional layer, input channels 3, output channels 8, filter size 3
23
+ # convolutional layer, input channels 3, output channels 8, filter size 3
30
24
torch .nn .Conv2d (3 , 8 , 3 , padding = 1 ),
31
- # TODO: max-pooling layer, size 2
25
+ # max-pooling layer, size 2
32
26
torch .nn .MaxPool2d (2 ),
33
27
# Stage 2
34
- # TODO: convolutional layer, input channels 8, output channels 16, filter size 3
28
+ # convolutional layer, input channels 8, output channels 16, filter size 3
35
29
torch .nn .Conv2d (8 , 16 , 3 , padding = 1 ),
36
- # TODO: max-pooling layer, size 2
30
+ # max-pooling layer, size 2
37
31
torch .nn .MaxPool2d (2 ),
38
32
# Stage 3
39
- # TODO: convolutional layer, input channels 16, output channels 32, filter size 3
33
+ # convolutional layer, input channels 16, output channels 32, filter size 3
40
34
torch .nn .Conv2d (16 , 32 , 3 , padding = 1 ),
41
- # TODO: convolutional layer, input channels 32, output channels 32, filter size 3
35
+ # convolutional layer, input channels 32, output channels 32, filter size 3
42
36
torch .nn .Conv2d (32 , 32 , 3 , padding = 1 ),
43
- # TODO: max-pooling layer, size 2
37
+ # max-pooling layer, size 2
44
38
torch .nn .MaxPool2d (2 ),
45
39
# Stage 4
46
- # TODO: convolutional layer, input channels 32, output channels 64, filter size 3
40
+ # convolutional layer, input channels 32, output channels 64, filter size 3
47
41
torch .nn .Conv2d (32 , 64 , 3 , padding = 1 ),
48
- # TODO: convolutional layer, input channels 64, output channels 64, filter size 3
42
+ # convolutional layer, input channels 64, output channels 64, filter size 3
49
43
torch .nn .Conv2d (64 , 64 , 3 , padding = 1 ),
50
- # TODO: max-pooling layer, size 2
44
+ # max-pooling layer, size 2
51
45
torch .nn .MaxPool2d (2 ),
52
46
# Stage 5
53
- # TODO: convolutional layer, input channels 64, output channels 64, filter size 3
47
+ # convolutional layer, input channels 64, output channels 64, filter size 3
54
48
torch .nn .Conv2d (64 , 64 , 3 , padding = 1 ),
55
- # TODO: convolutional layer, input channels 64, output channels 64, filter size 3
49
+ # convolutional layer, input channels 64, output channels 64, filter size 3
56
50
torch .nn .Conv2d (64 , 64 , 3 , padding = 1 ),
57
- # TODO: max-pooling layer, size 2
51
+ # max-pooling layer, size 2
58
52
torch .nn .MaxPool2d (2 ),
59
53
)
60
54
self .fc = nn .Sequential (
61
- # TODO: fully-connected layer (64->64)
62
- # TODO: fully-connected layer (64->10)
55
+ # fully-connected layer (64->64)
63
56
torch .nn .Linear (64 , 64 ),
57
+ # fully-connected layer (64->10)
64
58
torch .nn .Linear (64 , 10 ),
65
59
)
66
60
@@ -129,6 +123,7 @@ def data_creator(config):
129
123
shuffle = False ,
130
124
pin_memory = True ,
131
125
)
126
+ return train_loader , val_loader
132
127
133
128
134
129
# https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
0 commit comments