forked from PKU-RL/CORRO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_generative_model.py
145 lines (122 loc) · 5.9 KB
/
train_generative_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# generative model of transition and reward
# modeling P(s',r|s,a)
import os
import sys
import time
import argparse
import torch
import torch.nn.functional as F
from torchkit.pytorch_utils import set_gpu_mode
import utils.config_utils as config_utl
from utils import helpers as utl, offline_utils as off_utl
from relabel_model_config import args_gridworld_block, args_cheetah_vel, args_ant_dir, args_point_robot_v1, args_hopper_param, args_walker_param
import numpy as np
#from models.encoder import RNNEncoder, MLPEncoder
#from algorithms.dqn import DQN
#from algorithms.sac import SAC
from environments.make_env import make_env
from torchkit import pytorch_utils as ptu
from torchkit.networks import FlattenMlp
#from data_management.storage_policy import MultiTaskPolicyStorage
from utils import evaluation as utl_eval
from utils.tb_logger import TBLogger
#from models.policy import TanhGaussianPolicy
#from offline_learner import OfflineMetaLearner
from models.generative import CVAE
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
def __init__(self, dataset, goals):
self.dataset = dataset
self.goals = goals
self.size = len(goals) * dataset[0][0].shape[0] * dataset[0][0].shape[1]
def __len__(self):
return self.size
def __getitem__(self, index):
i_task = index % len(self.goals)
t = index // len(self.goals)
i_timestep = t % self.dataset[0][0].shape[0]
i_episode = t // self.dataset[0][0].shape[0]
obs, action, reward, next_obs = self.dataset[i_task][0][i_timestep, i_episode], self.dataset[i_task][1][i_timestep, i_episode],\
self.dataset[i_task][2][i_timestep, i_episode], self.dataset[i_task][3][i_timestep, i_episode]
#print(i_task, i_episode, i_timestep)
return torch.from_numpy(obs), torch.from_numpy(action), torch.from_numpy(reward), torch.from_numpy(next_obs)
def main():
parser = argparse.ArgumentParser()
# parser.add_argument('--env-type', default='gridworld')
# parser.add_argument('--env-type', default='point_robot_sparse')
# parser.add_argument('--env-type', default='cheetah_vel')
parser.add_argument('--env-type', default='gridworld_block')
args, rest_args = parser.parse_known_args()
env = args.env_type
# --- GridWorld ---
if env == 'gridworld_block':
args = args_gridworld_block.get_args(rest_args)
elif env == 'cheetah_vel':
args = args_cheetah_vel.get_args(rest_args)
elif env == 'point_robot':
args = args_point_robot.get_args(rest_args)
elif env == 'ant_dir':
args = args_ant_dir.get_args(rest_args)
elif env == 'point_robot_v1':
args = args_point_robot_v1.get_args(rest_args)
elif env == 'hopper_param':
args = args_hopper_param.get_args(rest_args)
elif env == 'walker_param':
args = args_walker_param.get_args(rest_args)
else:
raise NotImplementedError
set_gpu_mode(torch.cuda.is_available() and args.use_gpu)
utl.seed(args.seed)
# initialize tensorboard logger
if args.log_tensorboard:
tb_logger = TBLogger(args)
args, env = off_utl.expand_args(args) # add env information to args
#print(args)
print('loading dataset')
dataset, goals = off_utl.load_dataset(data_dir=args.data_dir, args=args, arr_type='numpy')
dataset = MyDataset(dataset, goals)
print('dataset loaded')
dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
model = CVAE(hidden_size=args.hidden_size,
num_hidden_layers=args.num_hidden_layers,
z_dim=args.z_dim,
action_size=env.action_space.n if env.action_space.__class__.__name__ == "Discrete" else args.action_dim,
state_size=args.obs_dim,
reward_size=1).to(ptu.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
model.train()
iters_total = 0
for epoch in range(args.n_epochs):
n_iter = 0
for obs, action, reward, next_obs in dataloader:
obs = obs.to(ptu.device)
action = action.to(ptu.device)
reward = reward.to(ptu.device)
next_obs = next_obs.to(ptu.device)
mean, logvar, z_sample = model.forward_encoder(obs, action, reward, next_obs)
next_obs_pred, reward_pred = model.forward_decoder(obs, action, z=z_sample)
kl_loss = model.compute_kl_divergence(mean, logvar).mean()
obs_recon_loss = F.mse_loss(next_obs_pred, next_obs)
reward_recon_loss = F.mse_loss(reward_pred, reward)
#print(kl_loss, obs_recon_loss, reward_recon_loss)
total_loss = args.beta * kl_loss + obs_recon_loss + reward_recon_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
n_iter+=1
iters_total += 1
if (n_iter % args.log_interval) == 0:
print('epoch {}, step {}/{}, kl loss: {}, state recon loss: {}, reward recon loss: {}, total loss: {}'.format(
epoch, n_iter, len(dataset) // args.batch_size, kl_loss, obs_recon_loss, reward_recon_loss,
total_loss))
tb_logger.writer.add_scalar('kl_loss', kl_loss.item(), iters_total)
tb_logger.writer.add_scalar('state_recon_loss', obs_recon_loss.item(), iters_total)
tb_logger.writer.add_scalar('reward_recon_loss', reward_recon_loss.item(), iters_total)
tb_logger.writer.add_scalar('total_loss', total_loss.item(), iters_total)
if (epoch+1) % args.save_interval == 0:
save_path = os.path.join(tb_logger.full_output_folder, 'models')
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(model.state_dict(), os.path.join(save_path, "model{0}.pt".format(epoch+1)))
if __name__ == '__main__':
main()