forked from PKU-RL/CORRO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_contrastive_no_generative.py
431 lines (359 loc) · 18.2 KB
/
train_contrastive_no_generative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# ablation: train contrastive transition representation without generative model
import os
import sys
import time
import argparse
import torch
import torch.nn as nn
from torchkit.pytorch_utils import set_gpu_mode
import utils.config_utils as config_utl
from utils import helpers as utl, offline_utils as off_utl
from offline_rl_config import args_gridworld_block, args_cheetah_vel, args_ant_dir, args_hopper_param, args_walker_param, args_point_robot_v1
import numpy as np
import random
from models.encoder import RNNEncoder, MLPEncoder, SelfAttnEncoder
from algorithms.dqn import DQN
from algorithms.sac import SAC
from models.generative import CVAE
from environments.make_env import make_env
from torchkit import pytorch_utils as ptu
from torchkit.networks import FlattenMlp
from data_management.storage_policy import MultiTaskPolicyStorage
from utils import evaluation as utl_eval
from utils.tb_logger import TBLogger
from models.policy import TanhGaussianPolicy
from offline_learner import OfflineMetaLearner
import matplotlib.pyplot as plt
#import matplotlib.colors as mcolors
from sklearn import manifold
class OfflineContrastive(OfflineMetaLearner):
# algorithm class of offline meta-rl with relabelling
def __init__(self, args, train_dataset, train_goals, eval_dataset, eval_goals):
"""
Seeds everything.
Initialises: logger, environments, policy (+storage +optimiser).
"""
self.args = args
# make sure everything has the same seed
utl.seed(self.args.seed)
# initialize tensorboard logger
if self.args.log_tensorboard:
self.tb_logger = TBLogger(self.args)
self.args, _ = off_utl.expand_args(self.args, include_act_space=True)
if self.args.act_space.__class__.__name__ == "Discrete":
self.args.policy = 'dqn'
else:
self.args.policy = 'sac'
# load augmented buffer to self.storage
self.load_buffer(train_dataset, train_goals)
if self.args.pearl_deterministic_encoder:
self.args.augmented_obs_dim = self.args.obs_dim + self.args.task_embedding_size
else:
self.args.augmented_obs_dim = self.args.obs_dim + self.args.task_embedding_size * 2
self.goals = train_goals
self.eval_goals = eval_goals
# context set, to extract task encoding
self.context_dataset = train_dataset
self.eval_context_dataset = eval_dataset
# initialize policy
self.initialize_policy()
# initialize task encoder
'''
if args.encoder_type == 'rnn':
self.encoder = RNNEncoder(
layers_before_gru=self.args.layers_before_aggregator,
hidden_size=self.args.aggregator_hidden_size,
layers_after_gru=self.args.layers_after_aggregator,
task_embedding_size=self.args.task_embedding_size,
action_size=self.args.act_space.n, # fixed a bug?
action_embed_size=self.args.action_embedding_size,
state_size=self.args.obs_dim,
state_embed_size=self.args.state_embedding_size,
reward_size=1,
reward_embed_size=self.args.reward_embedding_size,
).to(ptu.device)
elif args.encoder_type == 'mlp':
'''
self.encoder = MLPEncoder(
hidden_size=self.args.aggregator_hidden_size,
num_hidden_layers=2,
task_embedding_size=self.args.task_embedding_size,
action_size=self.args.act_space.n if self.args.act_space.__class__.__name__ == "Discrete" else self.args.action_dim,
state_size=self.args.obs_dim,
reward_size=1,
term_size=0, # encode (s,a,r,s') only
normalize=self.args.normalize_z
).to(ptu.device)
#else:
# raise NotImplementedError
self.encoder_optimizer = torch.optim.Adam(self.encoder.parameters(), lr=self.args.encoder_lr)
# context encoder: convert (batch, N, dim) to (batch, dim)
self.context_encoder = SelfAttnEncoder(input_dim=self.args.task_embedding_size,
num_output_mlp=self.args.context_encoder_output_layers).to(ptu.device)
self.context_encoder_optimizer = torch.optim.Adam(self.context_encoder.parameters(), lr=self.args.encoder_lr)
# create environment for evaluation
self.env = make_env(args.env_name,
args.max_rollouts_per_task,
seed=args.seed,
n_tasks=self.args.num_eval_tasks)
# fix the possible eval goals to be the testing set's goals
self.env.set_all_goals(eval_goals)
# create env for eval on training tasks
self.env_train = make_env(args.env_name,
args.max_rollouts_per_task,
seed=args.seed,
n_tasks=self.args.num_train_tasks)
self.env_train.set_all_goals(train_goals)
#if self.args.env_name == 'GridNavi-v2' or self.args.env_name == 'GridBlock-v2':
# self.env.unwrapped.goals = [tuple(goal.astype(int)) for goal in self.goals]
'''
if self.args.relabel_type == 'gt':
# create an env for reward/transition relabelling
self.relabel_env = make_env(args.env_name,
args.max_rollouts_per_task,
seed=args.seed,
n_tasks=1)
elif self.args.relabel_type == 'generative':
self.generative_model = CVAE(
hidden_size=args.cvae_hidden_size,
num_hidden_layers=args.cvae_num_hidden_layers,
z_dim=self.args.task_embedding_size,
action_size=self.args.act_space.n if self.args.act_space.__class__.__name__ == "Discrete" else self.args.action_dim,
state_size=self.args.obs_dim,
reward_size=1).to(ptu.device)
self.generative_model.load_state_dict(torch.load(self.args.generative_model_path,
map_location=ptu.device))
self.generative_model.train(False)
print('generative model loaded from {}'.format(self.args.generative_model_path))
else:
raise NotImplementedError
'''
self._preprocess_positive_samples()
#print(self.evaluate())
#self.vis_sample_embeddings('test.png')
#sys.exit(0)
# process the training dataset for fast positives sampling
def _preprocess_positive_samples(self):
ds = [np.concatenate(itm, axis=2) for itm in self.context_dataset]
ds = np.stack(ds) # (n_task, ts, episode, 11)
shape = ds.shape
ds = ds.reshape(shape[0], -1, shape[-1]) # (n_task, n_sample, dim)
#print(ds.shape)
self.train_samples_dataset = ds
# random sample positive samples (query, key) with size (batchsize, [s,a,r,s',t])
# return [s,a,r,s',t], [s,a,r,s',t]
# a very fast version!
def sample_positive_pairs(self, batch_size, trainset=True):
tasks_index = np.random.randint(0, self.train_samples_dataset.shape[0], size=(batch_size))
query_index = np.random.randint(0, self.train_samples_dataset.shape[1], size=(batch_size))
key_index = np.random.randint(0, self.train_samples_dataset.shape[1], size=(batch_size))
query = self.train_samples_dataset[tasks_index, query_index]
key = self.train_samples_dataset[tasks_index, key_index] # (batchsize, 11)
sizes = [self.args.obs_dim, self.args.act_space.n if self.args.act_space.__class__.__name__ == "Discrete" else self.args.action_dim,
1, self.args.obs_dim, 1]
query = ptu.FloatTensor(query)
key = ptu.FloatTensor(key)
query = torch.split(query, sizes, dim=1)
key = torch.split(key, sizes, dim=1)
assert len(query)==5 and len(key)==5
return query, key
# random sample (r, s'|s,a) over task distribution for negative samples
# state, action (batchsize, dim)
# return rewards, next_obs (batchsize, num_negatives, dim)
def create_negatives(self, state, action, num_negatives):
batch_size = state.shape[0]
tasks_index = np.random.randint(0, self.train_samples_dataset.shape[0], size=(batch_size*num_negatives))
ts_index = np.random.randint(0, self.train_samples_dataset.shape[1], size=(batch_size*num_negatives))
sizes = [self.args.obs_dim, self.args.act_space.n if self.args.act_space.__class__.__name__ == "Discrete" else self.args.action_dim,
1, self.args.obs_dim, 1]
samples = self.train_samples_dataset[tasks_index, ts_index]
samples = ptu.FloatTensor(samples)
samples = torch.split(samples, sizes, dim=1)
assert len(samples)==5
return samples
# InfoNCE
# q, k (b, dim); neg (b, N, dim)
def contrastive_loss(self, q, k, neg):
N = neg.shape[1]
b = q.shape[0]
l_pos = torch.bmm(q.view(b, 1, -1), k.view(b, -1, 1)) # (b,1,1)
l_neg = torch.bmm(q.view(b, 1, -1), neg.transpose(1,2)) # (b,1,N)
logits = torch.cat([l_pos.view(b, 1), l_neg.view(b, N)], dim=1)
labels = torch.zeros(b, dtype=torch.long)
labels = labels.to(ptu.device)
cross_entropy_loss = nn.CrossEntropyLoss()
loss = cross_entropy_loss(logits/self.args.infonce_temp, labels)
#print(logits, labels, loss)
return loss
def update(self, tasks):
rl_losses_agg = {}
if self.args.log_train_time:
time_cost = {'data_sampling':0, 'negatives_sampling':0, 'update_encoder':0, 'update_rl':0}
for update in range(self.args.rl_updates_per_iter):
if self.args.log_train_time:
_t_cost = time.time()
#print('data sampling')
# sample key, query, negative samples and train encoder
# (batchsize, dim)
queries, keys = self.sample_positive_pairs(self.args.contrastive_batch_size)
obs_q, actions_q, rewards_q, next_obs_q, terms_q = queries
obs_k, actions_k, rewards_k, next_obs_k, terms_k = keys
if self.args.log_train_time:
_t_now = time.time()
time_cost['data_sampling'] += (_t_now-_t_cost)
_t_cost = _t_now
# (batchsize, N, dim)
obs_neg, actions_neg, rewards_neg, next_obs_neg, terms_neg = self.create_negatives(obs_q, actions_q, self.args.n_negative_per_positive)
if self.args.log_train_time:
_t_now = time.time()
time_cost['negatives_sampling'] += (_t_now-_t_cost)
_t_cost = _t_now
b_dot_N = self.args.contrastive_batch_size * self.args.n_negative_per_positive
q_z = self.encoder.forward(obs_q, actions_q, rewards_q, next_obs_q)
k_z = self.encoder.forward(obs_k, actions_k, rewards_k, next_obs_k)
neg_z = self.encoder.forward(obs_neg.reshape(b_dot_N, -1), actions_neg.reshape(b_dot_N, -1),
rewards_neg.reshape(b_dot_N, -1), next_obs_neg.reshape(b_dot_N, -1)).view(
self.args.contrastive_batch_size, self.args.n_negative_per_positive, -1)
contrastive_loss = self.contrastive_loss(q_z, k_z, neg_z)
self.encoder_optimizer.zero_grad()
contrastive_loss.backward()
self.encoder_optimizer.step()
if self.args.log_train_time:
_t_now = time.time()
time_cost['update_encoder'] += (_t_now-_t_cost)
_t_cost = _t_now
rl_losses = {'contrastive_loss':contrastive_loss.item()}
if self.args.use_additional_task_info:
rl_losses['task_pred_loss'] = task_pred_loss.item()
for k, v in rl_losses.items():
if update == 0: # first iterate - create list
rl_losses_agg[k] = [v]
else: # append values
rl_losses_agg[k].append(v)
# take mean
for k in rl_losses_agg:
rl_losses_agg[k] = np.mean(rl_losses_agg[k])
self._n_rl_update_steps_total += self.args.rl_updates_per_iter
if self.args.log_train_time:
print(time_cost)
return rl_losses_agg
def log(self, iteration, train_stats):
#super().log(iteration, train_stats)
if self.args.save_model and (iteration % self.args.save_interval == 0):
save_path = os.path.join(self.tb_logger.full_output_folder, 'models')
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(self.encoder.state_dict(), os.path.join(save_path, "encoder{0}.pt".format(iteration)))
if iteration % self.args.log_interval == 0:
if self.args.log_tensorboard:
for k in train_stats.keys():
self.tb_logger.writer.add_scalar('rl_losses/'+k, train_stats[k],
self._n_rl_update_steps_total)
print("Iteration -- {}, Elapsed time {:5d}[s]"
.format(iteration, int(time.time() - self._start_time)), train_stats)
# visualize embeddings
if self.args.log_tensorboard and (iteration % self.args.log_vis_interval == 0):
save_path = os.path.join(self.tb_logger.full_output_folder, 'vis_z')
if not os.path.exists(save_path):
os.mkdir(save_path)
self.vis_sample_embeddings(os.path.join(save_path, "train_fig{0}.png".format(iteration)), trainset=True)
self.vis_sample_embeddings(os.path.join(save_path, "test_fig{0}.png".format(iteration)), trainset=False)
# visualize the encodings of (s,a,r,s')
# distinguish different tasks' critical samples and unimportant samples with different colors
# use tsne
def vis_sample_embeddings(self, save_path, trainset=True):
self.training_mode(False)
goals = self.goals if trainset else self.eval_goals
x, y = [], []
obs_context, actions_context, rewards_context, next_obs_context, _ = self.sample_context_batch(
tasks=[i for i in range(len(goals))], trainset=trainset)
#print(obs_context.shape)
n_timesteps, n_tasks, _ = obs_context.shape
encodings = self.encoder(
obs_context.reshape(n_timesteps*n_tasks, -1),
actions_context.reshape(n_timesteps*n_tasks, -1),
rewards_context.reshape(n_timesteps*n_tasks, -1),
next_obs_context.reshape(n_timesteps*n_tasks, -1)
)
encodings = encodings.reshape(n_timesteps, n_tasks, -1).cpu().detach().numpy()
obs_context, actions_context, rewards_context, next_obs_context = \
obs_context.cpu().detach().numpy(), actions_context.cpu().detach().numpy(), \
rewards_context.cpu().detach().numpy(), next_obs_context.cpu().detach().numpy()
if self.args.env_name == 'GridBlock-v2':
test_env = make_env(self.args.env_name,
self.args.max_rollouts_per_task,
seed=self.args.seed,
n_tasks=1)
for i, t in enumerate(goals):
test_env.set_goal(t.astype(np.int))
#print("task", t)
for j in range(obs_context.shape[0]):
is_critical = test_env.is_sample_contain_task(
obs_context[j,i],
np.argmax(actions_context[j,i]),
rewards_context[j,i,0],
next_obs_context[j,i],
)
x.append(encodings[j,i])
if is_critical:
y.append(i+1) # task-specific: 1~20
else:
y.append(0) # task-irrelevant: 0
else:
for i, t in enumerate(goals):
for j in range(obs_context.shape[0]):
x.append(encodings[j,i])
y.append(i)
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(np.asarray(x))
x_min, x_max = np.min(X_tsne, 0), np.max(X_tsne, 0)
data = (X_tsne - x_min) / (x_max - x_min)
if self.args.env_name == 'GridBlock-v2':
colors = plt.cm.rainbow(np.linspace(0,1,len(goals)+1))
else:
colors = plt.cm.rainbow(np.linspace(0,1,len(goals)))
#print(colors)
plt.cla()
fig = plt.figure()
ax = plt.subplot(111)
for i in range(data.shape[0]):
plt.text(data[i, 0], data[i, 1], str(y[i]),
color=colors[y[i]], #plt.cm.Set1(y[i] / 21),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
plt.savefig(save_path)
def main():
parser = argparse.ArgumentParser()
# parser.add_argument('--env-type', default='gridworld')
# parser.add_argument('--env-type', default='point_robot_sparse')
# parser.add_argument('--env-type', default='cheetah_vel')
parser.add_argument('--env-type', default='gridworld_block')
args, rest_args = parser.parse_known_args()
env = args.env_type
# --- GridWorld ---
if env == 'gridworld_block':
args = args_gridworld_block.get_args(rest_args)
elif env == 'cheetah_vel':
args = args_cheetah_vel.get_args(rest_args)
elif env == 'ant_dir':
args = args_ant_dir.get_args(rest_args)
elif env == 'hopper_param':
args = args_hopper_param.get_args(rest_args)
elif env == 'walker_param':
args = args_walker_param.get_args(rest_args)
elif env == 'point_robot_v1':
args = args_point_robot_v1.get_args(rest_args)
else:
raise NotImplementedError
set_gpu_mode(torch.cuda.is_available() and args.use_gpu)
args, _ = off_utl.expand_args(args) # add env information to args
#print(args)
dataset, goals = off_utl.load_dataset(data_dir=args.data_dir, args=args, arr_type='numpy')
assert args.num_train_tasks + args.num_eval_tasks == len(goals)
train_dataset, train_goals = dataset[0:args.num_train_tasks], goals[0:args.num_train_tasks]
eval_dataset, eval_goals = dataset[args.num_train_tasks:], goals[args.num_train_tasks:]
learner = OfflineContrastive(args, train_dataset, train_goals, eval_dataset, eval_goals)
learner.train()
if __name__ == '__main__':
main()