|
| 1 | +# Implementation of the Sparse Matrix ADT using a list. |
| 2 | + |
| 3 | +class SparseMatrix: |
| 4 | + # Create a sparse matrix of size numRows * numCols initialized to 0. |
| 5 | + def __init__( self, numRows, numCols ): |
| 6 | + self._numRows = numRows |
| 7 | + self._numCols = numCols |
| 8 | + self._elementList = list() |
| 9 | + |
| 10 | + # Return the number of rows in the matrix |
| 11 | + def numRows( self ): |
| 12 | + return self._numRows |
| 13 | + |
| 14 | + # Return the number of colums in the matrix. |
| 15 | + def numCols( self ): |
| 16 | + return self._numCols |
| 17 | + |
| 18 | + # Return the value of element (i, j): x[i, j] |
| 19 | + def __getitem__( self, ndxTuple ): |
| 20 | + row = ndxTuple[0] |
| 21 | + col = ndxTuple[1] |
| 22 | + assert row >=0 and row < self.numRows() and col >=0 and col < self.numCols(), \ |
| 23 | + "subscript out of range" |
| 24 | + ndx = self._findPosition( row, col ) |
| 25 | + if ndx is not None: |
| 26 | + return self._elementList[ndx].value |
| 27 | + else: |
| 28 | + return 0 |
| 29 | + |
| 30 | + # Set the value of element (i,j) to the value s: x[i,j] = s |
| 31 | + def __setitem__( self, ndxTuple, scalar ): |
| 32 | + ndx = self._findPosition( ndxTuple[0], ndxTuple[1] ) |
| 33 | + if ndx is not None: |
| 34 | + if scalar != 0.0: |
| 35 | + self._elementList[ndx].value = scalar |
| 36 | + else: |
| 37 | + self._elementList.pop( ndx ) |
| 38 | + else: |
| 39 | + if scalar != 0.0: |
| 40 | + element = _MatrixElement( ndxTuple[0], ndxTuple[1], scalar ) |
| 41 | + self._elementList.append( element ) |
| 42 | + |
| 43 | + # Scalar the matrix by the given scalar. |
| 44 | + def scaleBy( self, scalar ): |
| 45 | + for element in self._elementList: |
| 46 | + element.value *= scalar |
| 47 | + |
| 48 | + # add |
| 49 | + def __add__( self, rhsMatrix ): |
| 50 | + assert rhsMatrix.numRows() == self.numRows() and \ |
| 51 | + rhsMatrix.numCols() == self.numCols(), \ |
| 52 | + "Matrix sizes not compatible for the add operation." |
| 53 | + |
| 54 | + # Create the new matrix |
| 55 | + newMatrix = SparseMatrix( self.numRows(), self.numCols() ) |
| 56 | + |
| 57 | + # Duplicate the lhsmatrix. The elements are mutable, thus we must |
| 58 | + # create new objects and not simply copy the reference. |
| 59 | + for element in self._elementList: |
| 60 | + dupElement = _MatrixElement( element.row, element.col, element.value) |
| 61 | + newMatrix._elementList.append( dupElement ) |
| 62 | + |
| 63 | + # Iterate through each non-zero element of the rhsMatrix. |
| 64 | + for element in rhsMatrix._elementList: |
| 65 | + value = newMatrix[ element.row, element.col ] |
| 66 | + value += element.value |
| 67 | + newMatrix[ element.row, element.col ] = value |
| 68 | + |
| 69 | + # Return the new matrix |
| 70 | + return newMatrix |
| 71 | + |
| 72 | + |
| 73 | + # sub |
| 74 | + def __sub__( self, rhsMatrix ): |
| 75 | + assert rhsMatrix.numRows() == self.numRows() and \ |
| 76 | + rhsMatrix.numCols() == self.numCols(), \ |
| 77 | + "Matrix sizes not compatible for the sub operation." |
| 78 | + |
| 79 | + # Create the new matrix |
| 80 | + newMatrix = SparseMatrix( self.numRows(), self.numCols() ) |
| 81 | + |
| 82 | + # Duplicate the lhsMatrix. |
| 83 | + for element in self._elementList: |
| 84 | + dupElement = _MatrixElement( element.row, element.col, element.value ) |
| 85 | + newMatrix._elementList.append( dupElement ) |
| 86 | + |
| 87 | + # Iterator through each non-zero element of the rhsMatrix. |
| 88 | + for element in rhsMatrix._elementList: |
| 89 | + value = newMatrix[ element.row, element.col ] |
| 90 | + value -= element.value |
| 91 | + newMatrix[ element.row, element.col ] = value |
| 92 | + |
| 93 | + # Return the new matrix |
| 94 | + return newMatrix |
| 95 | + |
| 96 | + # multiply |
| 97 | + def __mul__( self, rhsMatrix ): |
| 98 | + assert rhsMatrix.numRows() == self.numCols(), \ |
| 99 | + "Marix sizes not compatible for the multiply operation." |
| 100 | + |
| 101 | + # Create the new matrix |
| 102 | + newMatrix = SparseMatrix( self.numRows(), rhsMatrix.numCols() ) |
| 103 | + |
| 104 | + for row in range( self.numRows() ): |
| 105 | + for col in range( rhsMatrix.numCols() ): |
| 106 | + tmp_sum = 0 |
| 107 | + for kk in range( self.numCols() ): |
| 108 | + if self[ row, kk ] != 0 and rhsMatrix[ kk, col ] != 0: |
| 109 | + tmp_sum += self[ row, kk ] * rhsMatrix[ kk, col ] |
| 110 | + newMatrix[ row, col ] = tmp_sum |
| 111 | + |
| 112 | + return newMatrix |
| 113 | + |
| 114 | + # Helper method used to find a specific matrix element (row, col) in the |
| 115 | + # list of non-zero entries. None is returned if the element is not found. |
| 116 | + def _findPosition( self, row, col ): |
| 117 | + n = len( self._elementList ) |
| 118 | + for i in range( n ): |
| 119 | + if row == self._elementList[i].row and \ |
| 120 | + col == self._elementList[i].col: |
| 121 | + return i |
| 122 | + return None |
| 123 | + |
| 124 | +# Storage class for holding the non-zero matrix elements. |
| 125 | +class _MatrixElement: |
| 126 | + def __init__( self, row, col, value ): |
| 127 | + self.row = row |
| 128 | + self.col = col |
| 129 | + self.value = value |
| 130 | + |
| 131 | + |
| 132 | +if __name__ == '__main__': |
| 133 | + sparse_mat_A = SparseMatrix( 3, 4 ) |
| 134 | + sparse_mat_B = SparseMatrix( 3, 4 ) |
| 135 | + sparse_mat_C = SparseMatrix( 4, 2 ) |
| 136 | + |
| 137 | + sparse_mat_A[0, 0] = 1 |
| 138 | + sparse_mat_A[2, 3] = 3 |
| 139 | + |
| 140 | + sparse_mat_B[1, 2] = 4 |
| 141 | + sparse_mat_B[2, 3] = -3 |
| 142 | + sparse_mat_B[2, 2] = 1 |
| 143 | + |
| 144 | + sparse_mat_C[0, 0] = 5 |
| 145 | + sparse_mat_C[2, 1] = 2 |
| 146 | + sparse_mat_C[3, 1] = 11 |
| 147 | + |
| 148 | + print 'mat A: ' |
| 149 | + for i in range(3): |
| 150 | + for j in range(4): |
| 151 | + print sparse_mat_A[i, j], |
| 152 | + print '' |
| 153 | + |
| 154 | + print 'mat B: ' |
| 155 | + for i in range(3): |
| 156 | + for j in range(4): |
| 157 | + print sparse_mat_B[i, j], |
| 158 | + print '' |
| 159 | + |
| 160 | + print 'mat C: ' |
| 161 | + for i in range(4): |
| 162 | + for j in range(2): |
| 163 | + print sparse_mat_C[i, j], |
| 164 | + print '' |
| 165 | + |
| 166 | + add_mat_01 = sparse_mat_A + sparse_mat_B |
| 167 | + print 'A + B: ' |
| 168 | + for i in range( add_mat_01.numRows() ): |
| 169 | + for j in range( add_mat_01.numCols() ): |
| 170 | + print add_mat_01[i, j], |
| 171 | + print '' |
| 172 | + |
| 173 | + sub_mat_02 = sparse_mat_A - sparse_mat_B |
| 174 | + print 'A - B: ' |
| 175 | + for i in range( sub_mat_02.numRows() ): |
| 176 | + for j in range( sub_mat_02.numCols() ): |
| 177 | + print sub_mat_02[i, j], |
| 178 | + print '' |
| 179 | + |
| 180 | + mul_mat_03 = sparse_mat_A * sparse_mat_C |
| 181 | + print ' A * C: ' |
| 182 | + for i in range( mul_mat_03.numRows() ): |
| 183 | + for j in range( mul_mat_03.numCols() ): |
| 184 | + print mul_mat_03[i, j], |
| 185 | + print '' |
0 commit comments