forked from lyuka/data_structure_and_algorithm_using_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexptree.py
113 lines (94 loc) · 3.95 KB
/
exptree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from listqueue import Queue
class ExpressionTree:
# Builds an expression tree for the expression string
def __init__( self, expStr ):
self._expTree = None
self._buildTree( expStr )
# Evaluates the expression tree and returns the resulting value.
def evaluate( self, varMap ):
return self._evalTree( self._expTree, varMap )
# Returns a string representation of the expression tree.
def __str__( self ):
return self._buildString( self._expTree )
def _buildTree( self, expStr ):
# Build a queue containing the tokens in the expression string.
expQ = Queue()
for token in expStr:
expQ.enqueue( token )
# Create an empty root node.
self._expTree = _ExpTreeNode( None )
# Call the recursive function to build the expression tree.
self._recBuildTree( self._expTree, expQ )
# Recursively builds the tree given an initial root node
def _recBuildTree( self, curNode, expQ ):
# Extract the next token from the queue.
token = expQ.dequeue()
# See if the token is a left paren: '('
if token == '(':
curNode.left = _ExpTreeNode( None )
self._recBuildTree( curNode.left, expQ )
# The next token will be an operator: + - / * %
curNode.element = expQ.dequeue()
curNode.right = _ExpTreeNode( None )
self._recBuildTree( curNode.right, expQ )
# The next token will be a ), remove it.
expQ.dequeue()
# Otherwise, the token is a digit that has to be convertedd to an int.
else:
curNode.element = token
def _evalTree( self, subtree, varDict ):
# See if the node is a leaf node, in which case return its value
if subtree.left is None and subtree.right is None:
# Is the operand a literal digit?
if subtree.element >= '0' and subtree.element <= '9':
return int(subtree.element)
else: # Or is it a variable?
assert subtree.element in varDict, "Invalid variable."
return varDict[subtree.element]
# Otherwise, it's an operator that needs to be computed
else:
# Evaluate the expression in the left and right subtrees.
lvalue = self._evalTree( subtree.left, varDict )
rvalue = self._evalTree( subtree.right, varDict )
return self._computeOp( lvalue, subtree.element, rvalue )
# Compute the arithmetic operation based on the supplied op string.
def _computeOp( self, left, op, right ):
if op == '+':
return left + right
elif op == '-':
return left - right
elif op == '*':
return left * right
elif op == '/':
return left / right
elif op == '%':
return left % right
# Recursively builds a string representation of the expression tree
def _buildString( self, treeNode ):
# If the node is a leaf, it's an operand
if treeNode.left is None and treeNode.right is None:
return str( treeNode.element )
else: # Otherwise, it's an operator.
expStr = '('
expStr += self._buildString( treeNode.left )
expStr += str( treeNode.element )
expStr += self._buildString( treeNode.right )
expStr += ')'
return expStr
# Storage class or creating the tree nodes.
class _ExpTreeNode:
def __init__( self, data ):
self.element = data
self.left = None
self.right = None
if __name__ == '__main__':
vars = { 'a' : 5, 'b' : 12 }
exp_str = '(a/(b-3))'
exp_tree = ExpressionTree( exp_str )
print 'a=', vars['a'], ', b=', vars['b']
print str(exp_tree), '=',
print exp_tree.evaluate( vars )
vars['a'] = 22
print 'a=', vars['a'], ', b=', vars['b']
print str(exp_tree), '=',
print exp_tree.evaluate( vars )