-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval_real.py
214 lines (169 loc) · 7.43 KB
/
eval_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import sys
import os
import time
import click
import numpy as np
import torch
import dill
import hydra
import zmq
from unified_video_action.policy.base_image_policy import BaseImagePolicy
from unified_video_action.workspace.base_workspace import BaseWorkspace
from umi.real_world.real_inference_util import (
get_real_obs_resolution,
get_real_umi_action,
)
from unified_video_action.common.pytorch_util import dict_apply
import omegaconf
import traceback
import pickle
from omegaconf import open_dict
language_latents = pickle.load(open("prepared_data/language_latents.pkl", "rb"))
import torch
import torch.nn.functional as F
def echo_exception():
exc_type, exc_value, exc_traceback = sys.exc_info()
# Extract unformatted traceback
tb_lines = traceback.format_exception(exc_type, exc_value, exc_traceback)
# Print line of code where the exception occurred
return "".join(tb_lines)
def smooth_action(act_out, window_size=3, pad_size=1):
# Define the moving average kernel
kernel = torch.ones(1, 1, window_size) / window_size # 1x1x3 kernel
kernel = kernel.to(act_out.device) # Match device of the input tensor
# Apply convolution with padding to preserve the sequence length
# Unsqueeze the last dimension for convolution along the time axis
print(act_out.shape)
act_out_padded = F.pad(act_out, (0, 0, pad_size, pad_size), mode="replicate")
batch_size, timesteps, action_dim = act_out_padded.shape
act_out_padded = act_out_padded.permute(
0, 2, 1
) # Shape: [batch_size, action_dim, timesteps]
act_out_padded = act_out_padded.reshape(
-1, 1, timesteps
) # Combine batch and action_dim
smoothed_act_out = F.conv1d(act_out_padded, kernel, padding=0)
smoothed_act_out = smoothed_act_out.reshape(
batch_size, action_dim, timesteps - 2 * pad_size
)
smoothed_act_out = smoothed_act_out.permute(
0, 2, 1
) # Shape: [batch_size, timesteps, action_dim]
return smoothed_act_out
class PolicyInferenceNode:
def __init__(
self, ckpt_path: str, ip: str, port: int, device: str, output_dir: str
):
self.ckpt_path = ckpt_path
if not self.ckpt_path.endswith(".ckpt"):
self.ckpt_path = os.path.join(self.ckpt_path, "checkpoints", "latest.ckpt")
payload = torch.load(
open(self.ckpt_path, "rb"), map_location="cpu", pickle_module=dill
)
self.cfg = payload["cfg"]
with open_dict(self.cfg):
if "autoregressive_model_params" in self.cfg.model.policy:
self.cfg.model.policy.autoregressive_model_params.num_sampling_steps = (
"100"
)
print("-----------------------------------------------")
print(
"num_sampling_steps",
self.cfg.model.policy.autoregressive_model_params.num_sampling_steps,
)
print("-----------------------------------------------")
# export cfg to yaml
cfg_path = self.ckpt_path.replace(".ckpt", ".yaml")
with open(cfg_path, "w") as f:
f.write(omegaconf.OmegaConf.to_yaml(self.cfg))
print(f"Exported config to {cfg_path}")
# print(f"Loading configure: {self.cfg.name}, workspace: {self.cfg._target_}, policy: {self.cfg.policy._target_}, model_name: {self.cfg.policy.obs_encoder.model_name}")
print(
f"Loading configure: {self.cfg.task.name}, workspace: {self.cfg.model._target_}, policy: {self.cfg.model.policy._target_}"
)
self.obs_res = get_real_obs_resolution(self.cfg.task.shape_meta)
self.get_class_start_time = time.monotonic()
cls = hydra.utils.get_class(self.cfg.model._target_)
self.workspace = cls(self.cfg, output_dir=output_dir)
self.workspace: BaseWorkspace
self.workspace.load_payload(payload, exclude_keys=None, include_keys=None)
self.policy: BaseImagePolicy = self.workspace.model
if self.cfg.training.use_ema:
self.policy = self.workspace.ema_model
print("Using EMA model")
self.device = torch.device(device)
self.policy.eval().to(self.device)
self.policy.reset()
self.ip = ip
self.port = port
def predict_action(self, obs_dict_np: dict, past_action_list=[]):
if "task_name" in obs_dict_np:
task_name = obs_dict_np["task_name"]
print("task_name", obs_dict_np["task_name"])
del obs_dict_np["task_name"]
if self.cfg.task.dataset.language_emb_model is not None:
if "cup" in task_name:
language_goal = language_latents["cup"]
elif "towel" in task_name:
language_goal = language_latents["towel"]
elif "mouse" in task_name:
language_goal = language_latents["mouse"]
language_goal = torch.tensor(language_goal).to(self.device)
language_goal = language_goal.unsqueeze(0)
print("task_name", task_name)
else:
language_goal = None
with torch.no_grad():
obs_dict = dict_apply(
obs_dict_np, lambda x: torch.from_numpy(x).unsqueeze(0).to(self.device)
)
if self.cfg.name == "uva":
result = self.policy.predict_action(
obs_dict=obs_dict, language_goal=language_goal
)
past_action_list.append(np.array(result["action"][0].cpu()))
if len(past_action_list) > 2:
past_action_list.pop(0)
action = smooth_action(result["action_pred"].detach().to("cpu")).numpy()[0]
else:
result = self.policy.predict_action(
obs_dict, language_goal=language_goal
)
action = result["action_pred"][0].detach().to("cpu").numpy()
print("action")
del result
del obs_dict
return action, past_action_list
def run_node(self):
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://{self.ip}:{self.port}")
print(f"PolicyInferenceNode is listening on {self.ip}:{self.port}")
past_action_list = []
while True:
obs_dict_np = socket.recv_pyobj()
try:
start_time = time.monotonic()
action, past_action_list = self.predict_action(
obs_dict_np, past_action_list
)
print(f"Inference time: {time.monotonic() - start_time:.3f} s")
except Exception as e:
err_str = echo_exception()
print(f"Error: {err_str}")
action = err_str
send_start_time = time.monotonic()
# time.sleep(0.1)
socket.send_pyobj(action)
print(f"Send time: {time.monotonic() - send_start_time:.3f} s")
@click.command()
@click.option("--input", "-i", required=True, help="Path to checkpoint")
@click.option("--ip", default="0.0.0.0")
@click.option("--port", default=8766, help="Port to listen on")
@click.option("--device", default="cuda", help="Device to run on")
@click.option("--output_dir", required=True)
def main(input, ip, port, device, output_dir):
node = PolicyInferenceNode(input, ip, port, device, output_dir)
node.run_node()
if __name__ == "__main__":
main()