Suppose you have downloaded the original dataset, we need to preprocess the data and save it as pickle file. Remember to set your path to the root of processed dataset in configs/*.yaml.
CASIA-B
Download URL: http://www.cbsr.ia.ac.cn/GaitDatasetB-silh.zip
- Original
CASIA-B 001 (subject) bg-01 (type) 000 (view) 001-bg-01-000-001.png (frame) 001-bg-01-000-002.png (frame) ...... ...... ...... ......
- Run
python datasets/pretreatment.py --input_path CASIA-B --output_path CASIA-B-pkl
- Processed
CASIA-B-pkl 001 (subject) bg-01 (type) 000 (view) 000.pkl (contains all frames) ...... ...... ......
OUMVLP
Step1: Download URL: http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitMVLP.html
Step2: Unzip the dataset, you will get a structure directory like:
python datasets/OUMVLP/extractor.py --input_path Path_of_OUMVLP-base --output_path Path_of_OUMVLP-raw --password Given_Password
- Original
OUMVLP-raw Silhouette_000-00 (view-sequence) 00001 (subject) 0001.png (frame) 0002.png (frame) ...... 00002 0001.png (frame) 0002.png (frame) ...... ...... Silhouette_000-01 00001 0001.png (frame) 0002.png (frame) ...... 00002 0001.png (frame) 0002.png (frame) ...... ...... Silhouette_015-00 ...... Silhouette_015-01 ...... ......
Step3 : To rearrange directory of OUMVLP dataset, turning to id-type-view structure, Run
python datasets/OUMVLP/rearrange_OUMVLP.py --input_path Path_of_OUMVLP-raw --output_path Path_of_OUMVLP-rearranged
Step4: Transforming images to pickle file, run
python datasets/pretreatment.py --input_path Path_of_OUMVLP-rearranged --output_path Path_of_OUMVLP-pkl
- Processed
OUMVLP-pkl 00001 (subject) 00 (sequence) 000 (view) 000.pkl (contains all frames) 015 (view) 015.pkl (contains all frames) ... 01 (sequence) 000 (view) 000.pkl (contains all frames) 015 (view) 015.pkl (contains all frames) ...... 00002 (subject) ...... ......
GREW
Step1: Download the data
Step2: Unzip the dataset, you will get a structure directory like:
- Original
GREW-raw ├── train ├── 00001 ├── 4XPn5Z28 ├── 00001.png ├── 00001_2d_pose.txt ├── 00001_3d_pose.txt ├── 4XPn5Z28_gei.png ├── test ├── gallery ├── 00001 ├── 79XJefi8 ├── 00001.png ├── 00001_2d_pose.txt ├── 00001_3d_pose.txt ├── 79XJefi8_gei.png ├── probe ├── 01DdvEHX ├── 00001.png ├── 00001_2d_pose.txt ├── 00001_3d_pose.txt ├── 01DdvEHX_gei.png ... ...
Step3 : To rearrange directory of GREW dataset, turning to id-type-view structure, Run
python datasets/GREW/rearrange_GREW.py --input_path Path_of_GREW-raw --output_path Path_of_GREW-rearranged
Step4: Transforming images to pickle file, run
python datasets/pretreatment.py --input_path Path_of_GREW-rearranged --output_path Path_of_GREW-pkl
- Processed
GREW-pkl ├── 00001train (subject in training set) ├── 00 ├── 4XPn5Z28 ├── 4XPn5Z28.pkl ├──5TXe8svE ├── 5TXe8svE.pkl ...... ├── 00001 (subject in testing set) ├── 01 ├── 79XJefi8 ├── 79XJefi8.pkl ├── 02 ├── t16VLaQf ├── t16VLaQf.pkl ├── probe ├── etaGVnWf ├── etaGVnWf.pkl ├── eT1EXpgZ ├── eT1EXpgZ.pkl ... ...
You can use the partition file in dataset folder directly, or you can create yours. Remember to set your path to the partition file in configs/*.yaml.