forked from lballabio/QuantLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcbarrierengine.hpp
336 lines (297 loc) · 12.8 KB
/
mcbarrierengine.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003, 2004 Neil Firth
Copyright (C) 2003, 2004 Ferdinando Ametrano
Copyright (C) 2003, 2004, 2005, 2007, 2008 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<[email protected]>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mcbarrierengine.hpp
\brief Monte Carlo barrier option engines
*/
#ifndef mc_barrier_engines_hpp
#define mc_barrier_engines_hpp
#include <ql/exercise.hpp>
#include <ql/instruments/barrieroption.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/pricingengines/barrier/mcbarrierengine.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <utility>
namespace QuantLib {
//! Pricing engine for barrier options using Monte Carlo simulation
/*! Uses the Brownian-bridge correction for the barrier found in
<i>
Going to Extremes: Correcting Simulation Bias in Exotic
Option Valuation - D.R. Beaglehole, P.H. Dybvig and G. Zhou
Financial Analysts Journal; Jan/Feb 1997; 53, 1. pg. 62-68
</i>
and
<i>
Simulating path-dependent options: A new approach -
M. El Babsiri and G. Noel
Journal of Derivatives; Winter 1998; 6, 2; pg. 65-83
</i>
\ingroup barrierengines
\test the correctness of the returned value is tested by
reproducing results available in literature.
*/
template <class RNG = PseudoRandom, class S = Statistics>
class MCBarrierEngine_2 : public BarrierOption::engine,
public McSimulation<SingleVariate,RNG,S> {
public:
typedef
typename McSimulation<SingleVariate,RNG,S>::path_generator_type
path_generator_type;
typedef typename McSimulation<SingleVariate,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<SingleVariate,RNG,S>::stats_type
stats_type;
// constructor
MCBarrierEngine_2(ext::shared_ptr<GeneralizedBlackScholesProcess> process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
bool isBiased,
BigNatural seed);
void calculate() const override {
Real spot = process_->x0();
QL_REQUIRE(spot > 0.0, "negative or null underlying given");
QL_REQUIRE(!triggered(spot), "barrier touched");
McSimulation<SingleVariate,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
results_.value = this->mcModel_->sampleAccumulator().mean();
if (RNG::allowsErrorEstimate)
results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
protected:
// McSimulation implementation
TimeGrid timeGrid() const override;
ext::shared_ptr<path_generator_type> pathGenerator() const override {
TimeGrid grid = timeGrid();
typename RNG::rsg_type gen =
RNG::make_sequence_generator(grid.size()-1,seed_);
return ext::shared_ptr<path_generator_type>(
new path_generator_type(process_,
grid, gen, brownianBridge_));
}
ext::shared_ptr<path_pricer_type> pathPricer() const override;
// data members
ext::shared_ptr<GeneralizedBlackScholesProcess> process_;
Size timeSteps_, timeStepsPerYear_;
Size requiredSamples_, maxSamples_;
Real requiredTolerance_;
bool isBiased_;
bool brownianBridge_;
BigNatural seed_;
};
//! Monte Carlo barrier-option engine factory
template <class RNG = PseudoRandom, class S = Statistics>
class MakeMCBarrierEngine_2 {
public:
MakeMCBarrierEngine_2(ext::shared_ptr<GeneralizedBlackScholesProcess>);
// named parameters
MakeMCBarrierEngine_2& withSteps(Size steps);
MakeMCBarrierEngine_2& withStepsPerYear(Size steps);
MakeMCBarrierEngine_2& withBrownianBridge(bool b = true);
MakeMCBarrierEngine_2& withAntitheticVariate(bool b = true);
MakeMCBarrierEngine_2& withSamples(Size samples);
MakeMCBarrierEngine_2& withAbsoluteTolerance(Real tolerance);
MakeMCBarrierEngine_2& withMaxSamples(Size samples);
MakeMCBarrierEngine_2& withBias(bool b = true);
MakeMCBarrierEngine_2& withSeed(BigNatural seed);
MakeMCBarrierEngine_2& withConstantParameters(bool b = true);
// conversion to pricing engine
operator ext::shared_ptr<PricingEngine>() const;
private:
ext::shared_ptr<GeneralizedBlackScholesProcess> process_;
bool brownianBridge_ = false, antithetic_ = false, biased_ = false;
Size steps_, stepsPerYear_, samples_, maxSamples_;
Real tolerance_;
BigNatural seed_ = 0;
};
// template definitions
template <class RNG, class S>
inline MCBarrierEngine_2<RNG, S>::MCBarrierEngine_2(
ext::shared_ptr<GeneralizedBlackScholesProcess> process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
bool isBiased,
BigNatural seed)
: McSimulation<SingleVariate, RNG, S>(antitheticVariate, false), process_(std::move(process)),
timeSteps_(timeSteps), timeStepsPerYear_(timeStepsPerYear), requiredSamples_(requiredSamples),
maxSamples_(maxSamples), requiredTolerance_(requiredTolerance), isBiased_(isBiased),
brownianBridge_(brownianBridge), seed_(seed) {
QL_REQUIRE(timeSteps != Null<Size>() ||
timeStepsPerYear != Null<Size>(),
"no time steps provided");
QL_REQUIRE(timeSteps == Null<Size>() ||
timeStepsPerYear == Null<Size>(),
"both time steps and time steps per year were provided");
QL_REQUIRE(timeSteps != 0,
"timeSteps must be positive, " << timeSteps <<
" not allowed");
QL_REQUIRE(timeStepsPerYear != 0,
"timeStepsPerYear must be positive, " << timeStepsPerYear <<
" not allowed");
registerWith(process_);
}
template <class RNG, class S>
inline TimeGrid MCBarrierEngine_2<RNG,S>::timeGrid() const {
Time residualTime = process_->time(arguments_.exercise->lastDate());
if (timeSteps_ != Null<Size>()) {
return TimeGrid(residualTime, timeSteps_);
} else if (timeStepsPerYear_ != Null<Size>()) {
Size steps = static_cast<Size>(timeStepsPerYear_*residualTime);
return TimeGrid(residualTime, std::max<Size>(steps, 1));
} else {
QL_FAIL("time steps not specified");
}
}
template <class RNG, class S>
inline
ext::shared_ptr<typename MCBarrierEngine_2<RNG,S>::path_pricer_type>
MCBarrierEngine_2<RNG,S>::pathPricer() const {
ext::shared_ptr<PlainVanillaPayoff> payoff =
ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-plain payoff given");
TimeGrid grid = timeGrid();
std::vector<DiscountFactor> discounts(grid.size());
for (Size i=0; i<grid.size(); i++)
discounts[i] = process_->riskFreeRate()->discount(grid[i]);
// do this with template parameters?
if (isBiased_) {
return ext::shared_ptr<
typename MCBarrierEngine_2<RNG,S>::path_pricer_type>(
new BiasedBarrierPathPricer(
arguments_.barrierType,
arguments_.barrier,
arguments_.rebate,
payoff->optionType(),
payoff->strike(),
discounts));
} else {
PseudoRandom::ursg_type sequenceGen(grid.size()-1,
PseudoRandom::urng_type(5));
return ext::shared_ptr<
typename MCBarrierEngine_2<RNG,S>::path_pricer_type>(
new BarrierPathPricer(
arguments_.barrierType,
arguments_.barrier,
arguments_.rebate,
payoff->optionType(),
payoff->strike(),
discounts,
process_,
sequenceGen));
}
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG, S>::MakeMCBarrierEngine_2(
ext::shared_ptr<GeneralizedBlackScholesProcess> process)
: process_(std::move(process)), steps_(Null<Size>()), stepsPerYear_(Null<Size>()),
samples_(Null<Size>()), maxSamples_(Null<Size>()), tolerance_(Null<Real>()) {}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withSteps(Size steps) {
steps_ = steps;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withStepsPerYear(Size steps) {
stepsPerYear_ = steps;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withBrownianBridge(bool brownianBridge) {
brownianBridge_ = brownianBridge;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withAntitheticVariate(bool b) {
antithetic_ = b;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withSamples(Size samples) {
QL_REQUIRE(tolerance_ == Null<Real>(),
"tolerance already set");
samples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withAbsoluteTolerance(Real tolerance) {
QL_REQUIRE(samples_ == Null<Size>(),
"number of samples already set");
QL_REQUIRE(RNG::allowsErrorEstimate,
"chosen random generator policy "
"does not allow an error estimate");
tolerance_ = tolerance;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withMaxSamples(Size samples) {
maxSamples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withBias(bool biased) {
biased_ = biased;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withSeed(BigNatural seed) {
seed_ = seed;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine_2<RNG,S>&
MakeMCBarrierEngine_2<RNG,S>::withConstantParameters(bool b) {
return *this;
}
template <class RNG, class S>
inline
MakeMCBarrierEngine_2<RNG,S>::operator ext::shared_ptr<PricingEngine>() const {
QL_REQUIRE(steps_ != Null<Size>() || stepsPerYear_ != Null<Size>(),
"number of steps not given");
QL_REQUIRE(steps_ == Null<Size>() || stepsPerYear_ == Null<Size>(),
"number of steps overspecified");
return ext::shared_ptr<PricingEngine>(new
MCBarrierEngine_2<RNG,S>(process_,
steps_,
stepsPerYear_,
brownianBridge_,
antithetic_,
samples_, tolerance_,
maxSamples_,
biased_,
seed_));
}
}
#endif