-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralNet.py
312 lines (271 loc) · 11.1 KB
/
neuralNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import sys
import os.path
from manimlib import *
#from network import *
import time
import random
import numpy as np
class NetworkMobject(VGroup):
CONFIG = {
"neuron_radius" : 0.35,
"neuron_to_neuron_buff" : 0.35,
"layer_to_layer_buff" : 1.75,
"neuron_stroke_color" : WHITE,
"neuron_stroke_width" : 8,
"neuron_fill_color" : WHITE,
"edge_color" : GREY_B,
"edge_stroke_width" : 5,
"edge_propogation_color" : YELLOW,
"edge_propogation_time" : 1,
"max_shown_neurons" : 100,
"brace_for_large_layers" : True,
"average_shown_activation_of_large_layer" : True,
"include_input_output_labels" : True,
}
def __init__(self, neatNet, input_labels, output_labels, scale = SCALE, **kwargs):
VGroup.__init__(self, **kwargs)
self.scale_net(scale)
self.neatNet = neatNet
self.layer_sizes = self.getNeatLayers(self.neatNet)
connections = self.get_connection_from_neat_eval_genomes(self.neatNet)
self.text_input_labels = input_labels
self.text_output_labels = output_labels
self.map_id_visual_neurons = {}
self.map_id_visual_connections = {}
self.neuron_opacities = {}
self.all_edges = []
self.add_neurons()
self.map_neurons()
self.add_edges(connections)
self.get_impulses()
self.normalize_weights_colors()
self.add_to_back(self.edge_groups)
self.add(self.layers)
def scale_net(self, scale):
self.neuron_radius = scale * self.neuron_radius
self.neuron_to_neuron_buff = scale * self.neuron_to_neuron_buff
self.layer_to_layer_buff = scale * self.layer_to_layer_buff
self.neuron_stroke_width = scale * self.neuron_stroke_width
self.edge_stroke_width = scale * self.edge_stroke_width
def getNeatLayers(self, net):
layer_sizes = []
for layer in net.layers:
layer_sizes.append(len(layer))
return layer_sizes
def get_connection_from_neat_eval_genomes(self, net):
connections = {}
for n in self.neatNet.node_evals:
nod_id = n[0]
nod_conns = n[5]
connections[nod_id] = nod_conns
return connections
def add_neurons(self):
layers = VGroup(*[
self.get_layer(size,i)
for i,size in enumerate(self.layer_sizes)
])
layers.arrange(RIGHT, buff = self.layer_to_layer_buff)
self.layers = layers
def map_neurons(self):
for l, layer in enumerate(self.layers):
for n, neuron in enumerate(layer.neurons):
neuron.id = self.neatNet.layers[l][n]
neuron.layer = l
self.map_id_visual_neurons[neuron.id] = neuron
def get_layer(self, size,i):
layer = VGroup()
n_neurons = size
if n_neurons > self.max_shown_neurons:
n_neurons = self.max_shown_neurons
neurons = VGroup(*[
Circle(
radius = self.neuron_radius,
stroke_color = self.neuron_stroke_color,
stroke_width = self.neuron_stroke_width,
fill_color = self.neuron_fill_color,
fill_opacity = 0,
)
for x in range(n_neurons)
])
neurons.arrange(
DOWN, buff = self.neuron_to_neuron_buff
)
for neuron in neurons:
neuron.edges_in = VGroup()
neuron.edges_out = VGroup()
layer.neurons = neurons
layer.add(neurons)
return layer
def add_edges(self, connections):
self.edge_groups = VGroup()
for l, layer in enumerate(self.layers[1:]):
edge_group = VGroup()
for nod1 in layer.neurons:
if nod1.id in connections:
for con in connections[nod1.id]:
nod2_id = con[0]
weight = con[1]
nod2 = self.map_id_visual_neurons[nod2_id]
edge = self.get_edge(nod2, nod1, weight)
edge.weight = weight
edge.across_n_layers = nod1.layer - nod2.layer
edge_group.add(edge)
nod2.edges_out.add(edge)
nod1.edges_in.add(edge)
self.map_id_visual_connections[(nod1.id,nod2.id)] = edge
self.all_edges.append(edge)
self.edge_groups.add(edge_group)
def get_edge(self, neuron1, neuron2, weight):
if weight <0:
color = RED_D
else:
color = BLUE_D
return Line(
neuron1.get_center(),
neuron2.get_center(),
buff = self.neuron_radius/2,
stroke_color = color,
stroke_width = self.edge_stroke_width,
stroke_opacity = 1
)
def normalize_weights_colors(self):
all_weights = []
for layer in self.layers[1:]:
for nod in layer.neurons:
for edge in nod.edges_in:
all_weights.append(edge.weight)
if len(all_weights)==0:
return
w = np.array(all_weights)
mean = np.mean(w)
stdev = np.std(w)
max_ = np.min(w)
min_ = np.max(w)
for layer in self.layers[1:]:
for nod in layer.neurons:
for edge in nod.edges_in:
edge.weight = (edge.weight - mean)/(stdev)
if stdev<1.3:
edge.weight/=2
edge.set_stroke(color=edge.stroke_color, width=edge.stroke_width, opacity=abs(edge.weight))
def normalize_neuron_opacities(self, layer):
opacities = [self.neatNet.values[neuron.id] for neuron in layer.neurons]
o = np.array(opacities)
mean = np.mean(o)
stdev = np.std(o)
max_ = np.min(o)
min_ = np.max(o)
for neuron in layer.neurons:
self.neuron_opacities[neuron.id] = self.neatNet.values[neuron.id]/2
def get_edge_propogation_animations(self, runtime = 4):
edge_group_copy = VGroup()
for layer in self.layers:
for nod in layer.neurons:
for edge in nod.edges_out:
edge_group_copy.add(edge)
return ShowCreation(edge_group_copy, run_time = runtime, lag_ratio = 0.05)
def get_impulses(self):
for layer in self.layers:
layer.impulses_in = VGroup()
layer.impulses_out = VGroup()
targets = VGroup()
for nod in layer.neurons:
for edge in nod.edges_out:
start = edge.get_start()
end = edge.get_end()
impulse = Dot(start, color = edge.stroke_color, radius = 0.15)
impulse.target = Dot(end, color = edge.stroke_color, radius = 0.15)
impulse.path = edge
impulse.across_n_layers = edge.get_length()
layer.impulses_out.add(impulse)
targets.add(impulse.target)
for edge in nod.edges_in:
start = edge.get_start()
end = edge.get_end()
impulse = Dot(start, color = edge.stroke_color, radius = 0.15)
impulse.target = Dot(end, color = edge.stroke_color, radius = 0.15)
impulse.path = edge
impulse.across_n_layers = edge.get_length()
layer.impulses_in.add(impulse)
targets.add(impulse.target)
def clear_opacities(self, scene):
for layer in self.layers:
for neuron in layer.neurons:
neuron.set_fill(opacity = 0)
def light_last_neuron(self):
layer = self.layers[-1]
for neuron in layer.neurons:
neuron.set_fill(opacity = 0)
if self.neatNet.last_neuron_fired!=None:
n = self.layers[-1].neurons[self.neatNet.last_neuron_fired]
n.set_fill(opacity =1, color = YELLOW)
def update_layer_opacities(self, layer):
if layer!=self.layers[-1]:
self.normalize_neuron_opacities(layer)
for neuron in layer.neurons:
neuron.set_fill(opacity = self.neuron_opacities[neuron.id], color = WHITE)
else:
self.light_last_neuron()
def update_opacities(self):
self.clear_opacities(None)
for layer in self.layers:
self.update_layer_opacities(layer)
def get_impulse_animations(self, layer,i,n):
all_edges = []
for nod in layer.neurons:
for edge in nod.edges_in:
all_edges.append(edge.copy().set_stroke(color=YELLOW, width=edge.stroke_width, opacity=0.5))
all_edges = VGroup(*sorted(all_edges, key = lambda x:x.get_y(), reverse=True))
edge_animation = ShowCreationThenDestruction(
all_edges,
run_time = 0.4,
lag_ratio = 0.1,
remover = True,
)
return edge_animation
def get_feed_forward_animation(self, scene):
a=[]
i=0
self.clear_opacities(scene)
self.update_layer_opacities(self.layers[0])
for layer in self.layers:
layer_copy = layer.deepcopy()
scene.play(self.get_impulse_animations(layer_copy,i,len(self.layers)-1), rate_func = linear)
scene.wait(0.01)
self.update_layer_opacities(layer)
i+=1
scene.wait(0.2)
def add_input_labels(self):
self.input_labels = VGroup()
self.input_labels_dict = {}
for n, neuron in enumerate(self.layers[0].neurons):
label = Tex(self.text_input_labels[n])
label.set_height(0.75*neuron.get_height())
label.move_to(neuron)
label.shift(neuron.get_width()*LEFT*2.7)
self.input_labels.add(label)
self.input_labels_dict[self.text_input_labels[n]] = label
def activate_input_labels(self):
self.add(self.input_labels)
def add_output_labels(self):
self.output_labels = VGroup()
self.output_labels_dict = {}
for n, neuron in enumerate(self.layers[-1].neurons):
label = Tex(self.text_output_labels[n])
label.set_height(0.75*neuron.get_height())
label.move_to(neuron)
label.shift(neuron.get_width()*RIGHT*1.2)
self.output_labels.add(label)
self.output_labels_dict[self.text_input_labels[n]] = label
def activate_output_labels(self):
self.add(self.output_labels)
def spawn_neural_net(self, added_anims = None, runtime = 3):
if added_anims is None:
added_anims = []
anims = []
for i, layer in enumerate(self.layers):
anims.append(FadeIn(layer.neurons, lag_ratio=0.5, run_time = runtime))
from pprint import pprint
edge_propag_anim = self.get_edge_propogation_animations(runtime = runtime)
anims.append(edge_propag_anim)
return(anims)