-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSegmentationHelper.cpp
859 lines (742 loc) · 32 KB
/
SegmentationHelper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
#include "SegmentationHelper.hpp"
#include <thread>
/////////////////////////////////////////////////
// //
// SEGMENTATION HELPER //
// //
////////////////////////////////////////////////
void drawMarkers(cv::Mat& markers, std::vector<cv::KeyPoint> kps, cv::Scalar color){
for (int i = 0; i < kps.size(); i++) {
cv::Point2f pti = kps[i].pt;
cv::circle( markers, pti,1, color, -1, 8, 0 );
}
}
void removeMasksFromImagesFnames(std::vector<cv::String>& fnames){
fnames.erase(std::remove_if(fnames.begin(), fnames.end(), [](const cv::String& f) {
return f.find(cv::String(MASK_TOKEN)) != cv::String::npos;
}), fnames.end());
}
void removeDatasetsFromBBoxesFnames(std::vector<cv::String>& fnames){
fnames.erase(std::remove_if(fnames.begin(), fnames.end(), [](const cv::String& f) {
return (f.find(cv::String(DATASET_TOKEN)) != cv::String::npos) || (f.find(cv::String(PARAMETERS_TOKEN)) != cv::String::npos);
}), fnames.end());
}
SegmentationHelper::SegmentationHelper(cv::String& inputDirectory, cv::String& imagesExt){
cv::utils::fs::glob(inputDirectory, cv::String(imagesExt), filenames);
cv::utils::fs::glob(inputDirectory, cv::String(BBOX_EXT), bboxes_fnames);
cv::utils::fs::glob(inputDirectory, cv::String(SEA_MASK_EXT), masks_fnames);
cv::utils::fs::glob(inputDirectory, cv::String(BOAT_MASK_EXT), boat_masks_fnames);
removeMasksFromImagesFnames(filenames);
removeDatasetsFromBBoxesFnames(bboxes_fnames);
std::sort(filenames.begin(), filenames.end());
std::sort(bboxes_fnames.begin(), bboxes_fnames.end());
std::sort(masks_fnames.begin(), masks_fnames.end());
std::sort(boat_masks_fnames.begin(), boat_masks_fnames.end());
if (filenames.size() != bboxes_fnames.size() || filenames.size() != masks_fnames.size() || filenames.size() != boat_masks_fnames.size()){
std::cout<<"Some masks/bboxes are missing"<<std::endl;
exit(1);
}
}
std::vector<SegmentationInfo> SegmentationHelper::loadInfos(bool boatsFromBBoxes){
std::vector<SegmentationInfo> infos;
SiftMasked smasked= SiftMasked();
for (int i = 0; i < filenames.size(); i++) {
int check = 0;
cv::Mat original_img = cv::imread(filenames[i], cv::IMREAD_COLOR);
cv::Mat seaMask = cv::imread(masks_fnames[i], cv::IMREAD_GRAYSCALE);
std::vector<cv::Rect> bboxes = smasked.checkFileBB(bboxes_fnames[i], check);
if(check == 1) {
exit(1);
}
cv::Mat boatMask;
if(boatsFromBBoxes) {
boatMask = smasked.findBinMask(original_img,bboxes);
} else {
boatMask = cv::imread(boat_masks_fnames[i], cv::IMREAD_GRAYSCALE);
}
boatMask.convertTo(boatMask, CV_32F);
seaMask.convertTo(seaMask, CV_32F);
cv::Mat intersection = boatMask.mul(seaMask);
boatMask = boatMask - intersection;
cv::Mat bgMask = 1 - seaMask - boatMask - intersection;
boatMask.convertTo(boatMask, CV_8U);
seaMask.convertTo(seaMask, CV_8U);
bgMask.convertTo(bgMask, CV_8U);
SegmentationInfo info = SegmentationInfo(original_img, seaMask, boatMask, bgMask, bboxes, filenames[i]);
infos.push_back(info);
}
return infos;
}
/////////////////////////////////////////////////
// //
// SEGMENTATION INFO //
// //
////////////////////////////////////////////////
// >>>>>
// >>>>> KEYPOINT CLASSIFICATION
// >>>>>
void classifyKeypoints(std::vector<std::vector<double>>& descVect, std::vector<unsigned int>& IDs, unsigned int index, unsigned int n, classFunc classify, void* usrData)
{
const unsigned int k = descVect.size()/n;
const unsigned int maxIt = (index==(n-1))?(descVect.size()):(k*(index+1));
for(unsigned int i=k*index; i<maxIt; ++i)
{
//if ((i - (k * index)) % 100 == 0)
// std::cout<<""<<i - (k * index) + 1<<" of "<< maxIt - (k*index)<<std::endl;
IDs[i] = classify(descVect[i], usrData);
}
}
void SegmentationInfo::computeKeypoints(bool shouldSharpen, classFunc classify, void* usrData, unsigned int numThread){
SiftMasked smasked = SiftMasked();
//BlackWhite_He equalizer = BlackWhite_He();
//cv::Mat eq_img = equalizer.bgr_to_gray_HE(image, sharpen);
cv::Mat eq_img = image.clone();
//sharpen(image, eq_img, 1);
if(classify)
{
cv::Mat allDescriptors;
std::vector<cv::KeyPoint> allKP = smasked.findFeatures(eq_img, cv::Mat(), allDescriptors);
std::vector<std::vector<double>> descVect;
appendDescriptors(descVect, allDescriptors, 0, false);
boatKps.clear();
seaKps.clear();
bgKps.clear();
std::vector<unsigned int> IDs(allKP.size(), 0);
std::vector<std::thread> threads;
for(unsigned int i=0; i<(numThread-1); ++i)
{
threads.push_back(std::thread(classifyKeypoints, std::ref(descVect), std::ref(IDs), i, numThread, classify, usrData));
}
classifyKeypoints(descVect, IDs, (numThread-1), numThread, classify, usrData);
for(unsigned int i=0; i<threads.size(); ++i)
{
threads[i].join();
}
for(unsigned int i=0; i<allKP.size(); ++i)
{
const unsigned int classID = IDs[i];
if (classID == BOAT_LABEL)
{
boatKps.push_back(allKP[i]);
}
else if (classID == SEA_LABEL)
{
seaKps.push_back(allKP[i]);
}
else if (classID == BG_LABEL)
{
bgKps.push_back(allKP[i]);
}
}
smasked.findDescriptors(eq_img, boatKps, boatDescriptors);
smasked.findDescriptors(eq_img, seaKps, seaDescriptors);
smasked.findDescriptors(eq_img, bgKps, bgDescriptors);
}
else
{
boatKps = smasked.findFeatures(eq_img, boatsMask, boatDescriptors);
seaKps = smasked.findFeatures(eq_img, seaMask, seaDescriptors);
bgKps = smasked.findFeatures(eq_img, bgMask, bgDescriptors);
}
}
void SegmentationInfo::showLabeledKps(){
cv::Mat kpImg = image.clone();
cv::drawKeypoints(kpImg, boatKps, kpImg, cv::Scalar(0,255,0));
cv::drawKeypoints(kpImg, seaKps, kpImg, cv::Scalar(0,0,255));
cv::drawKeypoints(kpImg, bgKps, kpImg, cv::Scalar(255,0,0));
cv::imshow("kps", kpImg);
//cv::imwrite(imageName.substr(0,imageName.size()-4) + "_labeled_kps.png", kpImg);
}
// >>>>>
// >>>>> GRID COMPUTATION
// >>>>>
bool inHollowMat(int r, int c, const cv::Size& size){
return r > 0 && c>0 && r < size.height && c < size.width && (r!=0 || c!=0);
}
void drawSingleMarker(cv::Mat& img, cv::Mat& grid, cv::Vec2f& com, int r, int c, int layer, double deltaX, double deltaY, double x0, double y0, cv::Scalar color){
if(com[0] > 0. && com[1] > 0.){
cv::circle(img, cv::Point2f(com[0], com[1]),1, color, -1, 8, 0 );
}else{
for(int nr = -1; nr <=1; nr++){
for(int nc = -1; nc <=1; nc++){
if(inHollowMat(r+nr, c+nc, img.size())){
if(grid.at<Vec3b>(r+nr,c+nc)(layer) > 0){
double x01 = x0 + nc*(deltaX/2);
double y01 = y0 + nr*(deltaY/2);
cv::circle(img, cv::Point2f(x01, y01),1, color, -1, 8, 0 );
}
}
}
}
//cv::circle(img, cv::Point2f(x0, y0),1, color, -1, 8, 0 );
}
}
void drawMarkersFromGrid(cv::Mat& img, cv::Mat& grid, cv::Mat& bgComs, cv::Mat& seaComs, cv::Mat& boatsComs, double deltaX, double deltaY){
for(int r = 0; r < grid.rows; r++){
const double y0 = deltaY*r + deltaY/2;
for(int c = 0; c < grid.cols; c++){
const double x0 = deltaX*c + deltaX/2;
if(grid.at<Vec3b>(r,c)(BOAT_GRID_INDEX) > 0){
cv::Vec2f com = boatsComs.at<cv::Vec2f>(r,c);
drawSingleMarker(img, grid, com, r, c, BOAT_GRID_INDEX, deltaX, deltaY, x0, y0, cv::Scalar::all(BOAT_LABEL));
} else if (grid.at<Vec3b>(r,c)(SEA_GRID_INDEX) > 0){
cv::Vec2f com = seaComs.at<cv::Vec2f>(r,c);
drawSingleMarker(img, grid, com, r, c, SEA_GRID_INDEX, deltaX, deltaY, x0, y0, cv::Scalar::all(SEA_LABEL));
} else if (grid.at<Vec3b>(r,c)(BG_GRID_INDEX) > 0) {
cv::Vec2f com = bgComs.at<cv::Vec2f>(r,c);
drawSingleMarker(img, grid, com, r, c, BG_GRID_INDEX, deltaX, deltaY, x0, y0, cv::Scalar::all(BG_LABEL));
}
}
}
}
void drawGridOnMat(cv::Mat& img, cv::Mat& grid,cv::Mat& coms, double deltaX, double deltaY, cv::Scalar color) {
for(int r = 0; r < grid.rows; r++){
const double y0 = deltaY*r + deltaY/2;
for(int c = 0; c < grid.cols; c++){
const double x0 = deltaX*c + deltaX/2;
if(grid.at<uchar>(r,c) > 0){
cv::rectangle(img, cv::Rect(x0 - deltaX/2, y0 - deltaY/2, deltaX, deltaY),color, -1, 8);
cv::Vec2f com = coms.at<cv::Vec2f>(r,c);
if(com[0] > 0. && com[1] > 0.)
cv::circle(img, cv::Point2f(com[0], com[1]),1, cv::Scalar(255,255,255), -1, 8, 0 );
else{
for(int nr = -1; nr <=1; nr++){
for(int nc = -1; nc <=1; nc++){
if(inHollowMat(r+nr, c+nc, img.size())){
if(grid.at<uchar>(r+nr,c+nc) > 0){
double x01 = x0 + nc*(deltaX/2);
double y01 = y0 + nr*(deltaY/2);
cv::circle(img, cv::Point2f(x01, y01),1, cv::Scalar(255,255,255), -1, 8, 0 );
}
}
}
}
}
}
}
}
}
void fillBg(cv::Mat& bg,cv::Mat& sea,const cv::Mat& boats, cv::Mat& laplacian, bool addBg){
cv::Mat adder = cv::Mat::zeros(bg.size(), bg.type());
cv::Mat seaAdder;
cv::bitwise_or(boats, bg, adder);
cv::bitwise_or(sea, adder, adder);
cv::Mat dilationElement = cv::Mat::ones(cv::Size(5,5), CV_8UC1);
cv::dilate(adder, adder, dilationElement);
cv::bitwise_not(adder, adder);
seaAdder = adder.clone();
dilationElement = cv::Mat::ones(cv::Size(7,7), CV_8UC1);
cv::dilate(laplacian, laplacian, dilationElement);
cv::bitwise_not(laplacian, laplacian);
cv::bitwise_and(laplacian, adder, adder);
if(addBg)
cv::bitwise_or(adder, bg, bg);
//else
// cv::bitwise_or(adder, sea, sea);
/*cv::bitwise_not(adder, adder);
cv::bitwise_and(seaAdder, adder, seaAdder);
cv::bitwise_or(seaAdder, sea, sea);*/
}
void fillKpAccumulator(std::vector<cv::KeyPoint>& kps, cv::Mat& accumulator, cv::Mat& coms, int index, double delta_x, double delta_y, uint cels_x, uint cels_y){
for(const auto& kp: kps){
unsigned int x = kp.pt.x/delta_x;
unsigned int y = kp.pt.y/delta_y;
x = x<cels_x?x:cels_x-1;
y = y<cels_y?y:cels_y-1;
accumulator.at<cv::Vec3f>(y,x)(index)+= 1.;
coms.at<cv::Vec2f>(y,x) += cv::Vec2f(kp.pt.x, kp.pt.y);
}
for(int r = 0; r < coms.rows; r++){
for(int c = 0; c < coms.cols; c++){
float acc = accumulator.at<cv::Vec3f>(r,c)(index);
if(acc>= 1.)
coms.at<cv::Vec2f>(r,c) /= acc;
}
}
}
void fillGrid(cv::Mat& accumulator, cv::Mat& grid){
for(unsigned int x=0; x<accumulator.cols; ++x)
{
for(unsigned int y=0; y<accumulator.rows; ++y)
{
const cv::Vec3f binValue = accumulator.at<cv::Vec3f>(y,x);
float tot = binValue[BOAT_GRID_INDEX] + binValue[SEA_GRID_INDEX] + binValue[BG_GRID_INDEX];
if(tot == 0)
continue;
float density = 1. / tot;
if(binValue[BOAT_GRID_INDEX] / density > 0.33 || binValue[SEA_GRID_INDEX] / density > 0.33 || binValue[BG_GRID_INDEX] / density > 0.33)
{
if(binValue[BOAT_GRID_INDEX]>binValue[SEA_GRID_INDEX] && binValue[BOAT_GRID_INDEX]>binValue[BG_GRID_INDEX])
{
grid.at<cv::Vec3b>(y,x)(BOAT_GRID_INDEX) = 255;
}
if(binValue[SEA_GRID_INDEX]>binValue[BOAT_GRID_INDEX] && binValue[SEA_GRID_INDEX]>binValue[BG_GRID_INDEX])
{
grid.at<cv::Vec3b>(y,x)(SEA_GRID_INDEX) = 255;
}
if(binValue[BG_GRID_INDEX]>binValue[BOAT_GRID_INDEX] && binValue[BG_GRID_INDEX]>binValue[SEA_GRID_INDEX])
{
grid.at<cv::Vec3b>(y,x)(BG_GRID_INDEX) = 255;
}
}
}
}
}
cv::Mat getLaplacianMask(cv::Mat& image, uint cels_x, uint cels_y, double thresh){
cv::Mat gray, laplacian;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(gray,gray, cv::Size(5,5), 0);
cv::Laplacian(gray, laplacian, CV_32FC1);
cv::normalize(laplacian, laplacian, cv::NORM_MINMAX);
cv::threshold(laplacian,laplacian, thresh, 1., cv::THRESH_BINARY);
laplacian *= 255;
laplacian.convertTo(laplacian, CV_8UC1);
cv::resize(laplacian, laplacian, cv::Size(cels_x, cels_y), cv::INTER_MAX);
return laplacian;
}
void morphMask(cv::Mat& mask, int maskSize){
cv::Size largeSize = cv::Size(mask.cols*2, mask.rows*2);
cv::Size origSize = mask.size();
cv::resize(mask,mask, largeSize, cv::INTER_NEAREST);
cv::morphologyEx(mask, mask, cv::MORPH_OPEN, cv::getStructuringElement(cv::MORPH_RECT, cv::Size(maskSize,maskSize)));
cv::morphologyEx(mask, mask, cv::MORPH_CLOSE, cv::getStructuringElement(cv::MORPH_RECT, cv::Size(maskSize,maskSize)));
cv::resize(mask, mask, origSize, cv::INTER_NEAREST);
}
float meanVec(std::vector<float>& vec){
float acc = 0.;
for(const auto& el: vec)
acc += el;
return acc / vec.size();
}
float varVec(std::vector<float>& vec, float mean){
float acc = 0;
for(const auto& el: vec)
acc += ((el - mean)*(el-mean));
return acc / vec.size();
}
bool isNoisySmallBoat(cv::Mat& boatsGrid, double varThreshold){
SiftMasked smasked;
std::vector<cv::Rect> initialBoxes;
std::vector<float> xs, ys;
smasked.binaryToBBoxes(boatsGrid,initialBoxes, true);
bool noisy = false;
for(const auto& rect: initialBoxes){
xs.push_back(rect.x);
ys.push_back(rect.y);
}
float meanX = meanVec(xs);
float meanY = meanVec(ys);
float varX = varVec(xs, meanX);
float varY = varVec(ys, meanY);
float varCoeffX = sqrtf(varX) / boatsGrid.cols;
float varCoeffY = sqrtf(varY) / boatsGrid.rows;
//std::cout<<"varcoeffX "<<varCoeffX<<" varcoeffY "<<varCoeffY;
// If the detected boats are small and distributed over 33% of both directions then
// it is most likely that the detected boats are noise. It is not possible
// to distinguish an image with many sparse small boats to an image with just
// noise detections.
if (varCoeffX > varThreshold || varCoeffY > varThreshold){
// if the variance along one direction results to be significantly
// bigger than the variance along the other, then it is likey that we are
// experiencing a convoy of small boats, since we assume that noise would be
// more or less evenly distributed along both directions.
float condNumber = 0.;
// both are over the threshold so division by zero is not a concern
if(varCoeffX >= varCoeffY){
condNumber = varCoeffX / varCoeffY;
} else {
condNumber = varCoeffY / varCoeffX;
}
//std::cout<<" cond num "<<condNumber<<std::endl;
// We want the largest variance to be at least 1.5 times the smallest one to have
// a predominant detection direction
if(condNumber > 1.5f)
return false;
else
return true;
}
return false;
}
bool largeBoatFound(cv::Mat& boatsGrid, double threshold){
SiftMasked smasked;
std::vector<cv::Rect> initialBoxes;
smasked.binaryToBBoxes(boatsGrid,initialBoxes, true);
for(const auto& rect: initialBoxes){
if(rect.area() >= threshold)
return true;
}
return false;
}
void removeFlatVarianceBoats(cv::Mat& boatsGrid, cv::Mat& laplacian){
for(int r = 0; r < boatsGrid.rows; r++){
for(int c = 0; c < boatsGrid.rows; c++){
if(laplacian.at<uchar>(r,c) == 0){
boatsGrid.at<uchar>(r,c) = 0;
}
}
}
}
void drawBlobPyramidBoats(cv::Mat& image, cv::Mat& markersMask, int layers){
cv::Mat gray;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(gray, gray, cv::Size(11,11),0);
double med = median(gray);
double lower = 0.67*med;
double upper = 1.33*med;
cv::Canny(gray, gray, lower, upper);
//cv::imshow("canny", gray);
/*std::cout<<"mmask type "<<type2str(markersMask.type())<<std::endl;
cv::imshow("mmask", markersMask);
cv::Mat blurred = image.clone();
cv::GaussianBlur(blurred, blurred, cv::Size(5,5),0);
for(int i = 0; i < layers; i++){
cv::Mat blobbed;
std::vector<cv::KeyPoint> blobs, darkBlobs;
//cv::GaussianBlur(blurred, blurred, cv::Size(21,21),0);
cv::imshow("blurred",blurred);
cv::SimpleBlobDetector::Params params = cv::SimpleBlobDetector::Params();
params.filterByColor = true;
params.blobColor = 255;
params.filterByCircularity = false;
params.minCircularity = 0.3;
params.maxCircularity = 1.0;
params.filterByArea = true;
params.filterByConvexity = false;
params.minConvexity = 0.87;
params.filterByInertia = false;
params.maxInertiaRatio = 0.9;
// detect light
cv::Ptr<cv::SimpleBlobDetector> detector = cv::SimpleBlobDetector::create(params);
detector->detect(blurred, blobs);
//detect dark
params.blobColor = 0;
detector = cv::SimpleBlobDetector::create(params);
// detect
detector->detect(blurred, darkBlobs);
int k = 2*i;
if(k == 0)
k = 1;
std::vector<cv::KeyPoint> validBlobs;
for(const auto& kp: blobs){
if(markersMask.at<cv::Vec3b>((int)kp.pt.y*k, (int)kp.pt.x*k) == cv::Vec3b(0,255,0)){
validBlobs.push_back(kp);
}
}
for(const auto& kp: darkBlobs){
if(markersMask.at<cv::Vec3b>((int)kp.pt.y*k, (int)kp.pt.x*k) == cv::Vec3b(0,255,0)){
validBlobs.push_back(kp);
}
}
cv::drawKeypoints(blurred, validBlobs, blobbed, cv::Scalar(0,255,0),cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
//cv::drawKeypoints(blobbed, darkBlobs, blobbed, cv::Scalar(0,0,255),cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
cv::imshow("blobbed",blobbed);
cv::waitKey(0);
cv::pyrDown(blurred, blurred);
}*/
}
void SegmentationInfo::performSegmentation(bool showResults, bool addBg, uint maxDim, double minNormVariance) {
cv::Mat markersMask = cv::Mat::zeros(image.size(), CV_8U);
cv::Mat denseMarkers = image.clone();
unsigned int cels_x = maxDim;
unsigned int cels_y = maxDim;
if(image.rows >= image.cols){
cels_x = (maxDim * image.cols)/(image.rows);
if (cels_x == 0)
cels_x = 1;
} else {
cels_y = (maxDim * image.rows)/(image.cols);
if (cels_y == 0)
cels_y = 1;
}
double delta_x = image.cols/cels_x;
double delta_y = image.rows/cels_y;
cv::Mat accumulator = cv::Mat::zeros(cv::Size(cels_x, cels_y), CV_32FC3);
cv::Mat grid = cv::Mat::zeros(cv::Size(cels_x, cels_y), CV_8UC3);
cv::Mat boatsComs = cv::Mat::zeros(cv::Size(cels_x, cels_y), CV_32FC2);
cv::Mat seaComs = cv::Mat::zeros(cv::Size(cels_x, cels_y), CV_32FC2);
cv::Mat bgComs = cv::Mat::zeros(cv::Size(cels_x, cels_y), CV_32FC2);
fillKpAccumulator(boatKps, accumulator, boatsComs, BOAT_GRID_INDEX, delta_x, delta_y, cels_x, cels_y);
fillKpAccumulator(seaKps, accumulator, seaComs, SEA_GRID_INDEX, delta_x, delta_y, cels_x, cels_y);
fillKpAccumulator(bgKps, accumulator, bgComs, BG_GRID_INDEX, delta_x, delta_y, cels_x, cels_y);
fillGrid(accumulator, grid);
cv::Mat chs[3];
cv::split(grid, chs);
bool bigBoatFlag = largeBoatFound(chs[BOAT_GRID_INDEX], 9.);
//cv::Mat boatLaplacian = getLaplacianMask(image, cels_x, cels_y, 0.1);
//removeFlatVarianceBoats(chs[BOAT_GRID_INDEX], boatLaplacian);
if(bigBoatFlag){
//std::cout<<"big boat"<<std::endl;
morphMask(chs[BOAT_GRID_INDEX],5);
cv::morphologyEx(chs[BOAT_GRID_INDEX], chs[BOAT_GRID_INDEX], cv::MORPH_ERODE, cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3,3)));
} else {
//std::cout<<"small boat"<<std::endl;
bool isNoisy = isNoisySmallBoat(chs[BOAT_GRID_INDEX],0.2);
if(isNoisy){
// noise, erase hard
morphMask(chs[BOAT_GRID_INDEX],21);
}
//morphMask(chs[BOAT_GRID_INDEX],1);
}
morphMask(chs[SEA_GRID_INDEX],5);
morphMask(chs[BG_GRID_INDEX],5);
cv::Mat laplacian = getLaplacianMask(image, cels_x, cels_y, minNormVariance);
if(addBg){
fillBg(chs[BG_GRID_INDEX], chs[SEA_GRID_INDEX], chs[BOAT_GRID_INDEX], laplacian, addBg);
cv::morphologyEx(chs[SEA_GRID_INDEX], chs[SEA_GRID_INDEX], cv::MORPH_ERODE, cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3,3)));
}
drawGridOnMat(denseMarkers, chs[BG_GRID_INDEX],bgComs, delta_x, delta_y, cv::Scalar(255,0,0));
drawGridOnMat(denseMarkers, chs[SEA_GRID_INDEX],seaComs, delta_x, delta_y, cv::Scalar(0,0,255));
drawGridOnMat(denseMarkers, chs[BOAT_GRID_INDEX],boatsComs, delta_x, delta_y, cv::Scalar(0,255,0));
cv::Mat mergedGrid;
cv::merge(chs, 3, mergedGrid);
// BG has lowest priority, drawn first
drawMarkersFromGrid(markersMask, mergedGrid,bgComs, seaComs, boatsComs, delta_x, delta_y);
/*// sea drawn next
drawMarkersFromGrid(markersMask, chs[SEA_GRID_INDEX], seaComs, delta_x, delta_y, cv::Scalar::all(SEA_LABEL));
// boats have highest priority and so gat drawn last
drawMarkersFromGrid(markersMask, chs[BOAT_GRID_INDEX],boatsComs, delta_x, delta_y, cv::Scalar::all(BOAT_LABEL));*/
if(showResults){
cv::imshow("dense markers", denseMarkers);
//cv::imwrite(imageName.substr(0,imageName.size()-4) + "_dense_markers.png", denseMarkers);
}
markersMask.convertTo(markersMask, CV_32S);
cv::Mat sharp;
sharpen(image, sharp, 1);
cv::watershed(sharp, markersMask);
Mat wshed(markersMask.size(), CV_8UC3);
for(int r = 0; r < markersMask.rows; r++ )
for(int c = 0; c < markersMask.cols; c++ )
{
int index = markersMask.at<int>(r,c);
if( index == -1 )
wshed.at<Vec3b>(r,c) = Vec3b(0,255,255);
else if (index == BOAT_LABEL)
wshed.at<Vec3b>(r,c) = Vec3b(0,255,0);
else if (index == SEA_LABEL)
wshed.at<Vec3b>(r,c) = Vec3b(0,0,255);
else
wshed.at<Vec3b>(r,c) = Vec3b(255,0,0);
}
segmentationResult = wshed.clone();
if (showResults) {
wshed = wshed*0.5 + image*0.5;
imshow( "watershed transform", wshed );
//cv::imwrite(imageName.substr(0,imageName.size()-4) + "_watershed_transform.png", wshed);
//drawBlobPyramidBoats(image, segmentationResult, 5);
}
}
// >>>>>
// >>>>> METRICS COMPUTATION
// >>>>>
cv::Mat getBoatsMaskErodedDilated(cv::Mat segmentationResult){
// keep only green (boats) channel
cv::Mat boatsSegments = segmentationResult.clone();
cv::Mat chs[3];
cv::split(boatsSegments,chs);
boatsSegments = chs[1];
// erode mask with elements:
// 1 1 1
// 1 1 1
// 1 1 1
uchar erosionComponents[] = {1,1,1,1,1,1,1,1,1};
cv::Mat erosionElement = cv::Mat(3,3,CV_8UC1, erosionComponents);
cv::erode(boatsSegments, boatsSegments, erosionElement);
// and then dilate
cv::dilate(boatsSegments, boatsSegments, erosionElement);
return boatsSegments;
}
void filterBoundingBoxesByArea(std::vector<cv::Rect>& bboxes, double ratio) {
double avg_area = 0;
for(auto& bbox: bboxes){
avg_area += (double)bbox.area();
}
avg_area /= (double)bboxes.size();
bboxes.erase(std::remove_if(bboxes.begin(), bboxes.end(), [avg_area, ratio](const cv::Rect& r) {
return r.area() <= ratio*avg_area;
}), bboxes.end());
}
std::vector<cv::Mat> masksForBoxes(std::vector<cv::Rect>& boxes, cv::Size img_size) {
std::vector<cv::Mat> masks;
for(const auto& b: boxes){
cv::Mat mask = cv::Mat::zeros(img_size, CV_8UC1);
cv::rectangle(mask,b,cv::Scalar(1),-1, LINE_8);
masks.push_back(mask);
}
return masks;
}
std::vector<cv::Point2i> getRectCorners(cv::Rect& r){
cv::Point2i uple = cv::Point2i(r.x, r.y);
cv::Point2i upri = cv::Point2i(r.x + r.width, r.y);
cv::Point2i bole = cv::Point2i(r.x , r.y + r.height);
cv::Point2i bori = cv::Point2i(r.x + r.width, r.y + r.height);
std::vector<cv::Point2i> corners;
corners.push_back(uple);
corners.push_back(upri);
corners.push_back(bole);
corners.push_back(bori);
return corners;
}
bool rectanglesIntersect(cv::Rect& r1, cv::Rect& r2){
auto corners = getRectCorners(r2);
for(const auto&c: corners){
if(r1.contains(c))
return true;
}
corners = getRectCorners(r1);
for(const auto&c: corners){
if(r2.contains(c))
return true;
}
return false;
}
cv::Rect findUnionRect(cv::Rect& r1, cv::Rect& r2){
auto corners1 = getRectCorners(r1);
auto corners2 = getRectCorners(r2);
corners1.insert(corners1.end(), corners2.begin(), corners2.end());
int minx = corners1[0].x, miny = corners1[0].y, maxx = corners1[0].x, maxy = corners1[0].y;
for(const auto& c: corners1){
if(c.x < minx)
minx = c.x;
else if (c.x > maxx)
maxx = c.x;
if(c.y < miny)
miny = c.y;
else if (c.y > maxy)
maxy = c.y;
}
return cv::Rect(minx, miny, maxx - minx, maxy - miny);
}
void mergeOverlappingRectangles(std::vector<cv::Rect>& rectangles, double threshold){
int prevSize = rectangles.size();
int newSize = prevSize;
do{
if(rectangles.size() <= 1){
break;
}
size_t bestFirstIndex = 0;
size_t bestSecondIndex = 0;
double bestValue = 1e15;
for(size_t firstIndex = 0; firstIndex < rectangles.size(); firstIndex++){
cv::Rect& firstBox = rectangles[firstIndex];
for(size_t secondIndex = firstIndex + 1; secondIndex < rectangles.size(); secondIndex++){
cv::Rect& secondBox = rectangles[secondIndex];
if(rectanglesIntersect(firstBox, secondBox)){
//auto unionRect = findUnionRect(firstBox, secondBox);
auto unionRect = firstBox | secondBox;
int areaSum = firstBox.area() + secondBox.area() - (firstBox & secondBox).area();
double metric = (double) unionRect.area() / (double)areaSum;
if(metric < bestValue){
bestFirstIndex = firstIndex;
bestSecondIndex = secondIndex;
bestValue = metric;
}
}
}
}
if(bestValue < threshold){
cv::Rect newRect = rectangles[bestFirstIndex] | rectangles[bestSecondIndex];
rectangles.erase(rectangles.begin() + bestSecondIndex);
rectangles.erase(rectangles.begin() + bestFirstIndex);
rectangles.push_back(newRect);
} else {
break;
}
prevSize = newSize;
newSize = rectangles.size();
} while (prevSize != newSize);
}
void SegmentationInfo::findBBoxes(bool showBoxes, double minPercArea, double maxOverlapMetric){
SiftMasked smasked = SiftMasked();
// extract boat-labeled pixels and perform erosion/dilation
cv::Mat boatsSegments = getBoatsMaskErodedDilated(segmentationResult);
// compute bounding boxes on the result
smasked.binaryToBBoxes(boatsSegments, estBboxes, true);
//std::cout<<"Size before "<<estBboxes.size()<<std::endl;
mergeOverlappingRectangles(estBboxes, maxOverlapMetric);
//std::cout<<"Size after "<<estBboxes.size()<<std::endl;
uint prevSize = estBboxes.size();
uint newSize = prevSize;
// filter bboxes with area <= 2% of the mean area
do{
filterBoundingBoxesByArea(estBboxes, minPercArea);
prevSize = newSize;
newSize = estBboxes.size();
} while(prevSize != newSize);
// display bounding boxes
if(showBoxes){
cv::Mat bboxes_img = image.clone();
for(auto& box: trueBboxes) {
cv::rectangle(bboxes_img, box, cv::Scalar(255,0,0),3);
}
for(auto& box: estBboxes) {
cv::rectangle(bboxes_img, box, cv::Scalar(0,255,0),2);
}
cv::imshow("bboxes", bboxes_img);
//cv::imwrite(imageName.substr(0,imageName.size()-4) + "_bboxes.png", bboxes_img);
}
}
std::vector<double> SegmentationInfo::computeIOU(bool showBoxes, double minPercArea, double maxOverlapMetric, uint& falsePos, uint& falseNeg){
std::vector<double> ious;
findBBoxes(showBoxes, minPercArea, maxOverlapMetric);
// precompute target bboxes masks
auto targetBBoxesMasks = masksForBoxes(trueBboxes, image.size());
// precompute estimated bboxes
auto estBBoxesMasks = masksForBoxes(estBboxes, image.size());
while(estBBoxesMasks.size() > 0){
if(targetBBoxesMasks.size() == 0){
//ious.push_back(0.);
//estBBoxesMasks.pop_back();
break;
}
size_t bestEstIndex = 0;
size_t bestTargetIndex = 0;
double bestIou = -1.;
for(size_t estIndex = 0; estIndex < estBBoxesMasks.size(); estIndex++){
cv::Mat& estBBox = estBBoxesMasks[estIndex];
for(size_t targetIndex = 0; targetIndex < targetBBoxesMasks.size(); targetIndex++){
cv::Mat& targetBBox = targetBBoxesMasks[targetIndex];
int intersectionArea = cv::countNonZero(estBBox.mul(targetBBox));
int unionArea = cv::countNonZero(estBBox + targetBBox);
double iou = (double)intersectionArea / (double) unionArea;
if(iou > bestIou){
bestEstIndex = estIndex;
bestTargetIndex = targetIndex;
bestIou = iou;
}
}
}
if(bestIou <= 0)
break;
estBBoxesMasks.erase(estBBoxesMasks.begin() + bestEstIndex);
targetBBoxesMasks.erase(targetBBoxesMasks.begin() + bestTargetIndex);
ious.push_back(bestIou);
}
//std::cout<<"Found "<<estBBoxesMasks.size()<<" false positives"<<std::endl;
//std::cout<<"Missed "<<targetBBoxesMasks.size()<<" boats"<<std::endl;
falsePos += estBBoxesMasks.size();
falseNeg += targetBBoxesMasks.size();
return ious;
}
double SegmentationInfo::computePixelAccuracy(){
cv::Mat chs[3];
cv::split(segmentationResult,chs);
cv::Mat seaSegments = chs[SEA_CH_INDEX].clone();
cv::Mat otherSegments = chs[BOATS_CH_INDEX].clone() + chs[BG_CH_INDEX].clone();
cv::Mat correctSeaPixels = seaSegments.mul(seaMask);
cv::Mat correctOtherPixels = otherSegments.mul(bgMask + boatsMask);
int correctPixels = cv::countNonZero(correctSeaPixels) + cv::countNonZero(correctOtherPixels);
int totalPixels = image.rows * image.cols;
return (double) correctPixels / (double) totalPixels;
}
void SegmentationInfo::appendBoatsDescriptors(std::vector<std::vector<double>>& vect, bool addEnc = true) const {
appendDescriptors(vect, boatDescriptors, BOATS_1H_ENC, addEnc);
}
void SegmentationInfo::appendSeaDescriptors(std::vector<std::vector<double>>& vect, bool addEnc = true) const {
appendDescriptors(vect, seaDescriptors, SEA_1H_ENC, addEnc);
}
void SegmentationInfo::appendBgDescriptors(std::vector<std::vector<double>>& vect, bool addEnc = true) const {
appendDescriptors(vect, bgDescriptors, BG_1H_ENC, addEnc);
}
cv::String& SegmentationInfo::getName(){
return imageName;
}