-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
154 lines (131 loc) · 3.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# from calculations.intrinsic_dimension_different_classes import calculate_fold_mean, calculate_sf_mean, calculate_f_mean, calculate_class_mean, calculate_type_mean
#
# res = calculate_fold_mean()
# print(max(res[1]))
# print(min(res[1]))
# print(max(res[2]))
# print(min(res[2]))
# # print(res)
# res = calculate_sf_mean()
# print(max(res[1]))
# print(min(res[1]))
# print(max(res[2]))
# print(min(res[2]))
# # print(res)
# res = calculate_f_mean()
# print(max(res[1]))
# print(min(res[1]))
# print(max(res[2]))
# print(min(res[2]))
# # print(res)
# res = calculate_class_mean()
# print(max(res[1]))
# print(min(res[1]))
# print(max(res[2]))
# print(min(res[2]))
# # print(res)
# res = calculate_type_mean()
# print(max(res[1]))
# print(min(res[1]))
# print(max(res[2]))
# print(min(res[2]))
# # print(res)
# from visualizations.sequence_lengths import run_all
#
# run_all()
# from calculations.intrinsic_dimension_data import run_all
#
# run_all()
# from visualizations.intrinsic_dimension_data import run_all
#
# run_all()
# from calculations.intrinsic_dimension_layers import run_all
#
# run_all()
# ID Through Layers
# from visualizations.intrinsic_dimension_layers import plot_all
#
# plot_all()
# Grandmother cells for different models/layers/labels
# from visualizations.grandmother_cells_all import run_all
#
# run_all()
# Get similarity plots and accuracies for different models/layers/labels
# from calculations.similarity import run_all
#
# run_all()
# from calculations.pca import run_all
#
# run_all()
#
#
# from visualizations.distance_histogram import run_all
#
# run_all()
# from visualizations.scree_plot import run_all
#
# run_all()
# from visualizations.lda_id_correlation import get_correlations
#
# get_correlations("results")
# import numpy as np
# from sklearn.datasets import load_iris
# from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
# def compute_class_scatter_matrices(X, y):
# """
# Computes the between-class scatter matrix (S_B) and
# the within-class scatter matrix (S_W) for dataset X, y.
# """
# # Number of features
# n_features = X.shape[1]
# # Overall mean of the entire dataset
# mean_overall = np.mean(X, axis=0)
# # Initialize S_W and S_B
# S_W = np.zeros((n_features, n_features))
# S_B = np.zeros((n_features, n_features))
# # Get unique class labels
# classes = np.unique(y)
# for c in classes:
# # Extract samples of class c
# X_c = X[y == c]
# # Class mean
# mean_c = np.mean(X_c, axis=0)
# # Number of samples in class c
# N_c = X_c.shape[0]
# # Within-class scatter contribution
# # (X_c - mean_c) has shape [N_c, n_features]
# # We need to sum up (x - mean_c)(x - mean_c)^T for each sample
# # A vectorized way to compute this is:
# X_c_centered = X_c - mean_c
# S_W_c = X_c_centered.T.dot(X_c_centered)
# S_W += S_W_c
# # Between-class scatter contribution
# mean_diff = (mean_c - mean_overall).reshape(n_features, 1)
# S_B_c = N_c * (mean_diff).dot(mean_diff.T)
# S_B += S_B_c
# return S_B, S_W
#
#
# def class_separation_score(X, y):
# """
# Computes a scalar class separation score as Trace(S_B) / Trace(S_W).
# """
# S_B, S_W = compute_class_scatter_matrices(X, y)
# # To avoid division by zero in degenerate cases
# trace_sw = np.trace(S_W)
# if trace_sw == 0:
# return np.inf # or return 0, or handle as you see fit
# return np.trace(S_B) / trace_sw
#
#
# data = load_iris()
# X = data.data
# y = data.target
#
# # 2. Fit an LDA model (optional for demonstration)
# lda = LinearDiscriminantAnalysis()
# lda.fit(X, y)
#
# # 3. Compute class separation score
# score = class_separation_score(X, y)
# print("Class separation score (Trace(S_B)/Trace(S_W)):", score)