-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsai.py
42 lines (35 loc) · 1.03 KB
/
sai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
def sub(a, b):
print(a-b)
print(sub(5, 6))
def count_perfect_divisors(arr):
MOD = 10**7
n = len(arr)
total_sum = 0
# Calculate the number of non-empty subsequences (2^n - 1)
num_subsequences = (1 << n) - 1
# Iterate through all possible subsequences
for i in range(1, num_subsequences + 1):
product = 1
for j in range(n):
if i & (1 << j):
product *= arr[j]
# Count distinct prime factors of the product
prime_factors_count = count_prime_factors(product)
total_sum += prime_factors_count
return total_sum % MOD
def count_prime_factors(num):
factors = set()
for i in range(2, int(num**0.5) + 1):
while num % i == 0:
factors.add(i)
num //= i
if num > 1:
factors.add(num)
return len(factors)
# Example usage:
A1 = [2, 15]
result1 = count_perfect_divisors(A1)
print(result1) # Output: 11
A2 = [2, 4, 8, 16, 32]
result2 = count_perfect_divisors(A2)
print(result2) # Output: 31