Skip to content

Commit a089299

Browse files
authored
Create SpecialSingleEvalTests.py for MAE prints with and without TZVP of non-nested o-MFML
1 parent d1911e7 commit a089299

File tree

1 file changed

+81
-0
lines changed

1 file changed

+81
-0
lines changed

SpecialSingleEvalTests.py

+81
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,81 @@
1+
import numpy as np
2+
from sklearn.utils import shuffle
3+
from sklearn.model_selection import train_test_split
4+
from tqdm.notebook import tqdm
5+
from TrueNonNested_Model_MFML import ModelMFML as MF
6+
7+
def main_withTZVP():
8+
prop='SCF'
9+
rep='CM'
10+
indexes = np.load('CheMFi/raws/indexes.npy',allow_pickle=True) #STO3G first
11+
X_train = np.load(f'CheMFi/raws/X_train_{rep}.npy')
12+
X_test = np.load(f'CheMFi/raws/X_test_{rep}.npy')
13+
X_val = np.load(f'CheMFi/raws/X_val_{rep}.npy')
14+
energies = np.load(f'CheMFi/raws/energies_{prop}.npy',allow_pickle=True) #STO3G first
15+
for i in range(5):
16+
avg=np.mean(energies[i])
17+
energies[i] = energies[i] - avg
18+
#energies = energies[:-1]
19+
y_test = np.load(f'CheMFi/raws/y_test_{prop}.npy') - avg
20+
y_val = np.load(f'CheMFi/raws/y_val_{prop}.npy') - avg
21+
22+
23+
nfids = indexes.shape[0]
24+
regs = np.full(2*nfids-1,1e-10)
25+
sigmas = np.full(2*nfids-1,150.0)
26+
kernels = np.full(2*nfids-1,'matern')
27+
28+
n_trains = np.asarray([2**(13), 2**(12), 2**(11), 2**(10),2**(9)])
29+
#init
30+
model = MF(reg=regs, kernel=kernels, sigma=sigmas,
31+
order=1, metric='l2', gammas=None,
32+
p_bar=True)
33+
#train models
34+
model.train(X_train_parent=X_train, y_trains=energies,
35+
indexes=indexes,
36+
shuffle=True, n_trains=n_trains,
37+
seed=42)
38+
_ = model.predict(X_test=X_test, X_val=X_val,
39+
y_test=y_test, y_val=y_val,
40+
optimiser='OLS')
41+
print('MAE for non-nested o-MFML on **including** TZVP fidelity in ground state energy training data: ',model.mae)
42+
43+
def main_noTZVP():
44+
prop='SCF'
45+
rep='CM'
46+
indexes = np.load('CheMFi/raws/indexes.npy',allow_pickle=True)[:-1] #STO3G first
47+
X_train = np.load(f'CheMFi/raws/X_train_{rep}.npy')
48+
X_test = np.load(f'CheMFi/raws/X_test_{rep}.npy')
49+
X_val = np.load(f'CheMFi/raws/X_val_{rep}.npy')
50+
energies = np.load(f'CheMFi/raws/energies_{prop}.npy',allow_pickle=True)[:-1] #STO3G first
51+
for i in range(4):
52+
avg=np.mean(energies[i])
53+
energies[i] = energies[i] - avg
54+
#energies = energies[:-1]
55+
y_test = np.load(f'CheMFi/raws/y_test_{prop}.npy') - avg
56+
y_val = np.load(f'CheMFi/raws/y_val_{prop}.npy') - avg
57+
58+
59+
nfids = indexes.shape[0]
60+
regs = np.full(2*nfids-1,1e-10)
61+
sigmas = np.full(2*nfids-1,150.0)
62+
kernels = np.full(2*nfids-1,'matern')
63+
64+
n_trains = np.asarray([2**(13), 2**(12), 2**(11), 2**(10)])#[5-nfids:]
65+
#init
66+
model = MF(reg=regs, kernel=kernels, sigma=sigmas,
67+
order=1, metric='l2', gammas=None,
68+
p_bar=True)
69+
#train models
70+
model.train(X_train_parent=X_train, y_trains=energies,
71+
indexes=indexes,
72+
shuffle=True, n_trains=n_trains,
73+
seed=42)
74+
_ = model.predict(X_test=X_test, X_val=X_val,
75+
y_test=y_test, y_val=y_val,
76+
optimiser='OLS')
77+
print('MAE for non-nested o-MFML **without** TZVP fidelity in ground state energy training data: ',model.mae)
78+
79+
80+
main_withTZVP()
81+
main_noTZVP()

0 commit comments

Comments
 (0)