forked from vivinvinod/MFML_DataHierarchy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLearningCurves.py
265 lines (222 loc) · 8.99 KB
/
LearningCurves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 2 14:57:28 2024
@author: vvinod
"""
import numpy as np
from tqdm import tqdm
from Model_MFML import ModelMFML as MFML
from sklearn.utils import shuffle
import qml.kernels as k
from qml.math import cho_solve
def KRR(X_train:np.ndarray, X_test:np.ndarray,
y_train:np.ndarray, y_test:np.ndarray,
k_type:str='laplacian', sigma:float=30.0, reg:float=1e-10):
'''
Function to perform KRR (for single fidelity case)
Parameters
----------
X_train : np.ndarray
Training reps.
X_test : np.ndarray
Test reps.
y_train : np.ndarray
training energies.
y_test : np.ndarray
test energies.
k_type : str, optional
The kernel type to be used. The default is 'laplacian'.
sigma : float, optional
Kernel width. The default is 30.0.
reg : float, optional
Lavrentiev regularizer. The default is 1e-10.
Returns
-------
mae : float
Mean absolute error calculated over y_test.
preds : np.ndarray
Array of predictions of size X_test along axis 0.
'''
if k_type=='matern':
K_train = k.matern_kernel(X_train,X_train,sigma, order=1, metric='l2')
K_test = k.matern_kernel(X_train,X_test,sigma, order=1, metric='l2')
elif k_type=='laplacian':
K_train = k.laplacian_kernel(X_train,X_train,sigma)
K_test = k.laplacian_kernel(X_train,X_test,sigma)
elif k_type=='gaussian':
K_train = k.gaussian_kernel(X_train,X_train,sigma)
K_test = k.gaussian_kernel(X_train,X_test,sigma)
elif k_type=='linear':
K_train = k.linear_kernel(X_train,X_train)
K_test = k.linear_kernel(X_train,X_test)
elif k_type=='sargan':
K_train = k.sargan_kernel(X_train,X_train,sigma,gammas=None)
K_test = k.sargan_kernel(X_train,X_test,sigma,gammas=None)
#regularize
K_train[np.diag_indices_from(K_train)] += reg
#train
alphas = cho_solve(K_train,y_train)
#predict
preds = np.dot(alphas, K_test)
#MAE calculation
mae = np.mean(np.abs(preds-y_test))
return mae, preds
def SF_learning_curve(X_train:np.ndarray, X_test:np.ndarray,
y_train:np.ndarray, y_test:np.ndarray,
k_type:str='laplacian',sigma:float=30,
reg:float=1e-10, navg:int=10):
'''
Function to generate averaged single fidelity learning curve
Parameters
----------
X_train : np.ndarray
Train reps.
X_test : np.ndarray
Test reps.
y_train : np.ndarray
training energies.
y_test : np.ndarray
Test energies.
k_type : str, optional
Type of kernel. The default is 'laplacian'.
sigma : float, optional
Kernel width. The default is 30.
reg : float, optional
Lavrentiev regularizer. The default is 1e-10.
navg : int, optional
Number of times to CV across trianing set. The default is 10.
Returns
-------
full_maes : np.ndarray
Learning Curve MAEs.
preds : np.ndarray
Predictions of size X_test across axis 0.
'''
full_maes = np.zeros((11),dtype=float)
for n in tqdm(range(navg),desc='average LC generation'):
maes = []
X_train,y_train = shuffle(X_train, y_train, random_state=42)
for i in range(1,12):
temp, preds = KRR(X_train[:2**i],X_test,y_train[:2**i],y_test,sigma=sigma,reg=reg,k_type=k_type)
maes.append(temp)
full_maes += np.asarray(maes)
full_maes = full_maes/navg
return full_maes, preds
def LC_routine(y_trains:np.ndarray, indexes:np.ndarray, X_train:np.ndarray, X_test:np.ndarray, X_val:np.ndarray,
y_test:np.ndarray, y_val:np.ndarray, k_type:str='laplacian',sigma:float=200.0, reg:float=1e-10, navg:int=10,
factor:int=2,nmax:int=10):
nfids = y_trains.shape[0]
MAEs_OLS = np.zeros((nmax-1),dtype=float) #for OLS MFML
MAEs_def = np.zeros((nmax-1),dtype=float) # for default MFML
for i in tqdm(range(navg),desc='avg run',leave=False):
mae_ntr_OLS = []
mae_ntr_def = []
for j in range(1,nmax):
n_trains = (2**j)*np.asarray([factor**(4),factor**(3),factor**2,factor,1])[5-nfids:]
###TRAINING######
model = MFML(reg=reg, kernel=k_type,
order=1, metric='l2', #only used for matern kernel
sigma=sigma, p_bar=False)
model.train(X_train_parent=X_train,
y_trains=y_trains, indexes=indexes,
shuffle=True, n_trains=n_trains, seed=i)
######default#########
_ = model.predict(X_test = X_test, y_test = y_test,
X_val = X_val, y_val = y_val,
optimiser='default')
mae_ntr_def.append(model.mae)
##########OLS##########
_ = model.predict(X_test = X_test, y_test = y_test,
X_val = X_val, y_val = y_val,
optimiser='OLS', copy_X= True,
fit_intercept= False)
mae_ntr_OLS.append(model.mae)
#store each avg run MAE
mae_ntr_OLS = np.asarray(mae_ntr_OLS)
mae_ntr_def = np.asarray(mae_ntr_def)
MAEs_OLS += mae_ntr_OLS
MAEs_def += mae_ntr_def
#return averaged MAE
MAEs_OLS = MAEs_OLS/navg
MAEs_def = MAEs_def/navg
return MAEs_OLS, MAEs_def
def varying_baselines(X_train:np.ndarray, X_val:np.ndarray,
X_test:np.ndarray, y_train:np.ndarray,
y_val:np.ndarray, y_test:np.ndarray, indexes:np.ndarray,
ker:str='laplacian', sig:float=200.0, reg:float=1-10,
navg:int=1, factor:int=2, nmax:int=10):
'''
Function to generate the learnign curves of MFML and o-MFML for different baseline fidelities
Parameters
----------
X_train : np.ndarray
Training reps.
X_val : np.ndarray
validation reps.
X_test : np.ndarray
test reps.
y_train : np.ndarray
training energies across all fidelities.
y_val : np.ndarray
validaiton energies at target fidelity.
y_test : np.ndarray
Test energies at target fidelity.
indexes : np.ndarray
Indexes of training reps and corresponding energy locations across fidelities.
ker : str, optional
Type of kernel to be used. The default is 'laplacian'.
sig : float, optional
Kernel width. The default is 200.0.
reg : float, optional
Lavrentiev regularizer. The default is 1-10.
navg : int, optional
Number of times to avg across the training set. The default is 1.
factor : int, optional
Scaling factor between fidelities. The default is 2.
nmax : int, optional
Log2 of maximum number of training samples to be used at the target fidelity keeping in mind the scaling factor. The default is 10.
Returns
-------
None.
All outputs are saved locally.
'''
maeols = np.zeros((4),dtype=object)
maedef = np.zeros((4),dtype=object)
for fb in tqdm(range(4),desc='Baseline loop...'):
maeols[fb],maedef[fb] = LC_routine(y_trains=y_train[fb:], indexes=indexes[fb:],
X_train=X_train, X_test=X_test,
X_val=X_val, y_test=y_test, y_val=y_val, k_type=ker,
sigma=sig, reg=reg, navg=navg,
factor=factor, nmax=nmax)
np.save(f'outs/def_mae_{prop}_{rep}_{factor}.npy',maedef)
np.save(f'outs/ols_mae_{prop}_{rep}_{factor}.npy',maeols)
def main():
X_train = np.load(f'Data/{rep}_train.npy')
X_test = np.load(f'Data/{rep}_test.npy')
X_val = np.load(f'Data/{rep}_val.npy')
y_train = np.load(f'Data/{prop}_train.npy',allow_pickle=True)
y_test = np.load(f'Data/{prop}_test.npy')
y_val = np.load(f'Data/{prop}_val.npy')
indexes = np.load('Data/indexes.npy',allow_pickle=True)
#run single fidelity KRR for given molecule
sf_maes,_ = SF_learning_curve(X_train=X_train, X_test=X_test,
y_train=y_train[-1], y_test=y_test,
k_type=ker,
sigma=sig, reg=reg,
navg=navg)
np.save(f'outs/sf_mae_{prop}_{rep}.npy',sf_maes)
n_list = [12,10,8,7,6]
for i in range(2,7): #loop over factors
varying_baselines(X_train, X_val, X_test, y_train, y_val, y_test,
indexes=indexes,
ker=ker, sig=sig, reg=reg,
navg=navg, factor=i, nmax=n_list[i-2])
if __name__=='__main__':
prop='EV'
rep='CM'
ker='matern'
reg=1e-10
sig=200.0
navg=10
main()