-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathML_Bot.py
222 lines (192 loc) · 9.53 KB
/
ML_Bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import random
import time
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import Adam
from tqdm import tqdm
from multiprocessing import Pool
from keras.utils import to_categorical
import hlt
import parse
from hlt import constants
from hlt import positionals
verbose = False
class HaliteModel:
MAX_FILES = 1000
DIRECTION_ORDER = [positionals.Direction.West,
positionals.Direction.North,
positionals.Direction.East,
positionals.Direction.South]
MOVE_TO_DIRECTION = {
"o": positionals.Direction.Still,
"w": positionals.Direction.West,
"n": positionals.Direction.North,
"e": positionals.Direction.East,
"s": positionals.Direction.South}
OUTPUT_TO_MOVE = {
0: "o",
1: "w",
2: "n",
3: "e",
4: "s"}
MOVE_TO_OUTPUT = {v: k for k, v in OUTPUT_TO_MOVE.items()}
def __init__(self, weights=None):
if weights is not None:
self.model = Sequential()
self.model.load_weights(weights)
else:
model = Sequential()
model.add(Dense(32, input_dim=78, activation="relu"))
model.add(Dropout(0.1))
model.add(Dense(32, activation="relu"))
model.add(Dropout(0.1))
model.add(Dense(5, activation="softmax"))
self.model = model
self.model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=0.0001, decay=1e-6),
metrics=["accuracy"])
def train_on_files(self, replay_folder):
game_data = parse.parse_replay_folder(replay_folder, max_files=self.MAX_FILES)
print("Processing Game States")
game_states = []
for g in game_data:
turn_number = 0
for game_map, moves, ships, other_ships, dropoffs, other_dropoffs in g:
turn_number += 1
for ship in list(ships.values()):
if random.random() < .25:
game_states.append((game_map, moves, ships, other_ships, dropoffs,
other_dropoffs, turn_number, ship))
print("Generating Training Data")
with Pool(80) as p:
data = list(tqdm(p.imap(get_state, game_states), total=len(game_states)))
print(f"Len of data: {len(data)}")
dat, lab = [], []
for i in range(0, len(data)):
dat += data[i][0]
lab += data[i][1]
print(f"Len of data1: {len(dat)}\nLen of labels1: {len(lab)}")
data = np.array(dat)
labels = np.array(lab)
print(f"Len of data2: {len(data)}\nLen of labels2: {len(labels)}")
print("Number of Datapoints: {}".format(len(data)))
print("Number of Features: {}".format(len(data[0])))
self.train(data, labels)
def train(self, data, moves):
print("Training Model")
self.model.fit(data, moves, batch_size=32, epochs=10, shuffle=True)
# Generate the feature vector
@staticmethod
def input_for_ship(game_map, ship, my_other_ships, other_ships, my_dropoffs, other_dropoffs, turn_number,
rotation=0):
result = []
# game turn
percent_done = turn_number / constants.MAX_TURNS
result.append(percent_done)
# Local area stats
for objs in [my_other_ships, other_ships, my_dropoffs, other_dropoffs]:
objs_directions = []
for d in HaliteModel.DIRECTION_ORDER:
objs_directions.append(int(game_map.normalize(ship.position.directional_offset(d)) in objs))
result += HaliteModel.rotate_direction_vector(objs_directions, rotation)
# directions to highest halite cells at certain distances
for distance in range(1, 13):
max_halite_cell = HaliteModel.max_halite_within_distance(game_map, ship.position, distance)
halite_directions = HaliteModel.generate_direction_vector(game_map, ship.position, max_halite_cell)
result += HaliteModel.rotate_direction_vector(halite_directions, rotation)
# directions to closest drop off
closest_dropoff = my_dropoffs[0]
for dropoff in my_dropoffs:
if game_map.calculate_distance(ship.position, dropoff) < game_map.calculate_distance(ship.position,
closest_dropoff):
closest_dropoff = dropoff
dropoff_directions = HaliteModel.generate_direction_vector(game_map, ship.position, closest_dropoff)
result += HaliteModel.rotate_direction_vector(dropoff_directions, rotation)
# local area halite
local_halite = []
for d in HaliteModel.DIRECTION_ORDER:
local_halite.append(game_map[game_map.normalize(ship.position.directional_offset(d))].halite_amount / 1000)
result += HaliteModel.rotate_direction_vector(local_halite, rotation)
# current cell halite indicators
for i in range(0, 200, 50):
result.append(int(game_map[ship.position].halite_amount <= i))
result.append(game_map[ship.position].halite_amount / 1000)
return result
def predict_move(self, ship, game_map, me, other_players, turn_number):
other_ships = [s.position for s in me.get_ships() if s.id != ship.id]
opp_ships = [s.position for p in other_players for s in p.get_ships()]
my_dropoffs = [d.position for d in list(me.get_dropoffs()) + [me.shipyard]]
opp_dropoffs = [d.position for p in other_players for d in p.get_dropoffs()] + \
[p.shipyard.position for p in other_players]
data = np.array(self.input_for_ship(game_map,
ship,
other_ships,
opp_ships,
my_dropoffs,
opp_dropoffs,
turn_number))
data = data.reshape(1, -1)
model_output = self.model.predict(data)[0]
return self.MOVE_TO_DIRECTION[self.OUTPUT_TO_MOVE[model_output]]
def save(self, file_name=None):
if file_name is None:
file_name = "model_weights_%f.hdf5" % time.time()
self.model.save(file_name)
# finds cell with max halite within certain distance of location
@staticmethod
def max_halite_within_distance(game_map, location, distance):
max_halite_cell = location
max_halite = 0
for dx in range(-distance, distance + 1):
for dy in range(-distance, distance + 1):
loc = game_map.normalize(location + hlt.Position(dx, dy))
if game_map.calculate_distance(location, loc) > distance:
continue
# pick cell with max halite
cell_halite = game_map[loc].halite_amount
if cell_halite > max_halite:
max_halite_cell = loc
max_halite = cell_halite
return max_halite_cell
# generate vector that tells which directions to go to get from ship_location to target
@staticmethod
def generate_direction_vector(game_map, ship_location, target):
directions = []
for d in HaliteModel.DIRECTION_ORDER:
directions.append(
int(game_map.calculate_distance(game_map.normalize(ship_location.directional_offset(d)), target) <
game_map.calculate_distance(ship_location, target)))
return directions
@staticmethod
def rotate_direction_vector(direction_vector, rotations):
for i in range(rotations):
direction_vector = [direction_vector[-1]] + direction_vector[:-1]
return direction_vector
def get_state(game_state):
data, labels = [], []
game_map, moves, ships, other_ships, dropoffs, other_dropoffs, turn_number, ship = game_state
move = "o" if ship.id not in moves else moves[ship.id]
# Throw away movements that take us closer to base. We will let logic take care of returning to base
if move is not "o" and (
game_map.calculate_distance(ship.position.directional_offset(HaliteModel.MOVE_TO_DIRECTION[move]),
dropoffs[0].position) <
game_map.calculate_distance(ship.position, dropoffs[0].position)):
return [], []
move_id = HaliteModel.MOVE_TO_OUTPUT[move]
for rot in range(4): # do all 4 rotations for each game state
data.append(HaliteModel.input_for_ship(game_map=game_map,
ship=ship,
my_other_ships=[s2.position for s2 in ships.values() if
s2.id != ship.id],
other_ships=[s2.position for s2 in other_ships.values()],
my_dropoffs=[d.position for d in dropoffs],
other_dropoffs=[d.position for d in other_dropoffs],
turn_number=turn_number,
rotation=rot))
labels.append(to_categorical(np.array(move_id), num_classes=5))
move_id = 0 if move_id == 0 else (move_id % 4) + 1
return data, labels
if __name__ == '__main__':
model = HaliteModel()
model.train_on_files("train")
model.save()