Skip to content

Latest commit

 

History

History
117 lines (82 loc) · 2.2 KB

29-SparseData.md

File metadata and controls

117 lines (82 loc) · 2.2 KB

Python Pandas - Sparse Data

Sparse objects are “compressed” when any data matching a specific value (NaN / missing value, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been “sparsified”. This will make much more sense in an example.

All of the standard Pandas data structures apply the to_sparse method −

import pandas as pd
import numpy as np

ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print(sts)
0   -1.097459
1    0.937604
2         NaN
3         NaN
4         NaN
5         NaN
6         NaN
7         NaN
8   -0.460228
9    0.190611
dtype: float64
BlockIndex
Block locations: array([0, 8], dtype=int32)
Block lengths: array([2, 2], dtype=int32)

BlockIndex

Block locations: array([0, 8], dtype=int32) Block lengths: array([2, 2], dtype=int32) The sparse objects exist for memory efficiency reasons. Let us now assume you had a large NA DataFrame and execute the following code −

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10000, 4))
df.iloc[:9998] = np.nan
sdf = df.to_sparse()

print(sdf.density)
0.0002

Any sparse object can be converted back to the standard dense form by calling to_dense

import pandas as pd
import numpy as np
ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print(sts.to_dense())
0    1.007406
1   -0.115116
2         NaN
3         NaN
4         NaN
5         NaN
6         NaN
7         NaN
8   -0.360093
9    0.164599
dtype: float64

Sparse Dtypes

Sparse data should have the same dtype as its dense representation. Currently, float64, int64 and booldtypes are supported. Depending on the original dtype, fill_value default changes − float64 − np.nan int64 − 0 bool − False Let us execute the following code to understand the same −

import pandas as pd
import numpy as np

s = pd.Series([1, np.nan, np.nan])
print s

s.to_sparse()
print s
Its output is as follows0   1.0
1   NaN
2   NaN
dtype: float64

0   1.0
1   NaN
2   NaN
dtype: float64