Skip to content

Files

Latest commit

d11b77e · Dec 16, 2018

History

History
80 lines (44 loc) · 2.04 KB

25-DataFunctionality.md

File metadata and controls

80 lines (44 loc) · 2.04 KB

Python Pandas - Date Functionality

Extending the Time series, Date functionalities play major role in financial data analysis.

While working with Date data, we will frequently come across the following − Generating sequence of dates Convert the date series to different frequencies

Create a Range of Dates

Using the date.range() function by specifying the periods and the frequency, we can create the date series. By default, the frequency of range is Days.

import pandas as pd 
print(pd.date_range('1/1/2018', periods=5) )
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05'],
              dtype='datetime64[ns]', freq='D')
### Change the Date Frequency
import pandas as pd 
print(pd.date_range('1/1/2018', periods=5,freq='M') )


   
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
               '2018-05-31'],
              dtype='datetime64[ns]', freq='M')

bdate_range

bdate_range() stands for business date ranges. Unlike date_range(), it excludes Saturday and Sunday.

import pandas as pd 
print(pd.date_range('1/1/2018', periods=5))
    
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',
               '2011-01-05'],
              dtype='datetime64[ns]', freq='D')

Observe, after 3rd March, the date jumps to 6th march excluding 4th and 5th. Just check your calendar for the days.

Convenience functions like date_range and bdate_range utilize a variety of frequency aliases.

The default frequency for date_range is a calendar day while the default for bdate_range is a business day.

import pandas as pd 
start = pd.datetime(2018, 1, 1) 
end = pd.datetime(2018, 1, 8) 
print(pd.date_range(start, end))
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
              dtype='datetime64[ns]', freq='D')