The core object of scikit-learn is the estimator object.
All estimator objects expose afit
method, that takes as input a dataset (2D array):
estimator.fit(data)
<\code><\pre>
Suppose``LogReg`` and``KNN`` are (shorthand names for) scikit-learn estimators.
# Supervised Learning Problem
LogReg.fit(SAheartFeat, SAheartTarget)
# Unsupervised Learning Problem
KNN.fit(IrisFeat)
<\code><\pre>
#### Estimator parameters:
All the parameters of an estimator can be set when it is instanciated, or by modifying the corresponding attribute:
estimator = Estimator(param1=1, param2=2)
estimator.param1
<\code><\pre>
#### Retrieving Estimator parameters:
* When data is fitted with an estimator, parameters are estimated from the data at hand.
* All the estimated parameters are attributes of the estimator object ending by an underscore:
estimator.estimated_param_
<\code><\pre>