Skip to content

Commit afa58f7

Browse files
set1
1 parent 92a9380 commit afa58f7

File tree

2 files changed

+458
-0
lines changed

2 files changed

+458
-0
lines changed

SKL-Binary- Accuracy.ipynb

+255
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,255 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"Appraising Binary Classification Models\n",
8+
"======================================\n",
9+
"Interesting Theory Stuff : Accuracy, Precision, F-Measures, Recall, Specificity, Sensitivity\n"
10+
]
11+
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"### Set up some data"
17+
]
18+
},
19+
{
20+
"cell_type": "code",
21+
"execution_count": 20,
22+
"metadata": {},
23+
"outputs": [],
24+
"source": [
25+
"import numpy as np\n",
26+
"\n",
27+
"y_pred = np.zeros(10000)\n",
28+
"y_test = np.zeros(10000)\n",
29+
"\n",
30+
"indices1 = np.random.randint(0,10000,300)\n",
31+
"indices2 = np.random.randint(0,10000,400)\n",
32+
"indices3 = np.random.randint(0,10000,500)\n",
33+
"y_pred[indices1] = 1\n",
34+
"y_test[indices2] = 1\n",
35+
"y_pred[indices3] = 1\n",
36+
"y_test[indices3] = 1\n"
37+
]
38+
},
39+
{
40+
"cell_type": "code",
41+
"execution_count": 21,
42+
"metadata": {},
43+
"outputs": [
44+
{
45+
"data": {
46+
"text/plain": [
47+
"858.0"
48+
]
49+
},
50+
"execution_count": 21,
51+
"metadata": {},
52+
"output_type": "execute_result"
53+
}
54+
],
55+
"source": [
56+
"np.sum(y_test)"
57+
]
58+
},
59+
{
60+
"cell_type": "code",
61+
"execution_count": 22,
62+
"metadata": {},
63+
"outputs": [
64+
{
65+
"data": {
66+
"text/plain": [
67+
"774.0"
68+
]
69+
},
70+
"execution_count": 22,
71+
"metadata": {},
72+
"output_type": "execute_result"
73+
}
74+
],
75+
"source": [
76+
"np.sum(y_pred)"
77+
]
78+
},
79+
{
80+
"cell_type": "code",
81+
"execution_count": 23,
82+
"metadata": {},
83+
"outputs": [
84+
{
85+
"name": "stdout",
86+
"output_type": "stream",
87+
"text": [
88+
"Accuracy score: 0.939\n"
89+
]
90+
}
91+
],
92+
"source": [
93+
"from sklearn.metrics import accuracy_score\n",
94+
"print('Accuracy score: ', accuracy_score(y_test, y_pred)) \n"
95+
]
96+
},
97+
{
98+
"cell_type": "code",
99+
"execution_count": 24,
100+
"metadata": {},
101+
"outputs": [
102+
{
103+
"data": {
104+
"text/plain": [
105+
"array([[8879, 263],\n",
106+
" [ 347, 511]])"
107+
]
108+
},
109+
"execution_count": 24,
110+
"metadata": {},
111+
"output_type": "execute_result"
112+
}
113+
],
114+
"source": [
115+
"from sklearn.metrics import confusion_matrix\n",
116+
"\n",
117+
"confusion_matrix(y_test,y_pred)"
118+
]
119+
},
120+
{
121+
"cell_type": "code",
122+
"execution_count": 11,
123+
"metadata": {},
124+
"outputs": [
125+
{
126+
"name": "stdout",
127+
"output_type": "stream",
128+
"text": [
129+
" precision recall f1-score support\n",
130+
"\n",
131+
" 0.0 0.96 0.97 0.97 9137\n",
132+
" 1.0 0.65 0.58 0.62 863\n",
133+
"\n",
134+
"avg / total 0.93 0.94 0.94 10000\n",
135+
"\n"
136+
]
137+
}
138+
],
139+
"source": [
140+
"from sklearn.metrics import classification_report\n",
141+
"print(classification_report(y_test, y_pred))"
142+
]
143+
},
144+
{
145+
"cell_type": "code",
146+
"execution_count": 12,
147+
"metadata": {},
148+
"outputs": [],
149+
"source": [
150+
"from sklearn.metrics import precision_recall_curve\n",
151+
"\n",
152+
"precision, recall, thresholds = precision_recall_curve(y_test, y_pred)"
153+
]
154+
},
155+
{
156+
"cell_type": "code",
157+
"execution_count": 13,
158+
"metadata": {},
159+
"outputs": [
160+
{
161+
"data": {
162+
"text/plain": [
163+
"array([ 0.0863 , 0.65116279, 1. ])"
164+
]
165+
},
166+
"execution_count": 13,
167+
"metadata": {},
168+
"output_type": "execute_result"
169+
}
170+
],
171+
"source": [
172+
"precision"
173+
]
174+
},
175+
{
176+
"cell_type": "code",
177+
"execution_count": 14,
178+
"metadata": {},
179+
"outputs": [
180+
{
181+
"data": {
182+
"text/plain": [
183+
"array([ 1. , 0.58400927, 0. ])"
184+
]
185+
},
186+
"execution_count": 14,
187+
"metadata": {},
188+
"output_type": "execute_result"
189+
}
190+
],
191+
"source": [
192+
"recall"
193+
]
194+
},
195+
{
196+
"cell_type": "code",
197+
"execution_count": 15,
198+
"metadata": {},
199+
"outputs": [
200+
{
201+
"data": {
202+
"text/plain": [
203+
"array([ 0., 1.])"
204+
]
205+
},
206+
"execution_count": 15,
207+
"metadata": {},
208+
"output_type": "execute_result"
209+
}
210+
],
211+
"source": [
212+
"thresholds"
213+
]
214+
},
215+
{
216+
"cell_type": "code",
217+
"execution_count": null,
218+
"metadata": {
219+
"collapsed": true
220+
},
221+
"outputs": [],
222+
"source": []
223+
},
224+
{
225+
"cell_type": "code",
226+
"execution_count": null,
227+
"metadata": {
228+
"collapsed": true
229+
},
230+
"outputs": [],
231+
"source": []
232+
}
233+
],
234+
"metadata": {
235+
"kernelspec": {
236+
"display_name": "Python 3.6",
237+
"language": "python",
238+
"name": "python36"
239+
},
240+
"language_info": {
241+
"codemirror_mode": {
242+
"name": "ipython",
243+
"version": 3
244+
},
245+
"file_extension": ".py",
246+
"mimetype": "text/x-python",
247+
"name": "python",
248+
"nbconvert_exporter": "python",
249+
"pygments_lexer": "ipython3",
250+
"version": "3.6.2"
251+
}
252+
},
253+
"nbformat": 4,
254+
"nbformat_minor": 2
255+
}

0 commit comments

Comments
 (0)