Skip to content

Commit ae4ac57

Browse files
reload
1 parent d84e4a9 commit ae4ac57

40 files changed

+1119
-1194
lines changed

02-SKLtopics-NOTES.pdf

-383 KB
Binary file not shown.

02-SKLtopics-NOTES.tex

+45-45
Original file line numberDiff line numberDiff line change
@@ -1,60 +1,60 @@
11
\documentclass[SKL-MASTER.tex]{subfiles}
2-
\begin{document}
3-
\LARGE
2+
3+
44
\textbf{What does Scikit Learn do?}\\
55
\begin{figure}[h!]
66
\centering
77
\includegraphics[width=1.2\linewidth]{images/SKLsite}
88

99
\end{figure}
1010
\newpage
11-
\LARGE
12-
\noindent \textbf{1. Classification}
13-
\begin{itemize}
14-
\item \noindent \textbf{Description:} Identifying to which category an object belongs to.
15-
\item \noindent \textbf{Applications:} Spam detection, Image recognition.
16-
\item \noindent \textbf{Algorithms:} SVM, nearest neighbors, random forest,
17-
\end{itemize}
18-
19-
\bigskip
20-
\noindent \textbf{2. Regression}
21-
\begin{itemize}
22-
\item \noindent \textbf{Description:} Predicting a continuous-valued attribute associated with an object.
23-
\item \noindent \textbf{Applications:} Drug response, Stock prices.
24-
\item \noindent \textbf{Algorithms:} SVR, ridge regression, Lasso,
11+
12+
\textbf{1. Classification}
13+
14+
* \textbf{Description:} Identifying to which category an object belongs to.
15+
* \textbf{Applications:} Spam detection, Image recognition.
16+
* \textbf{Algorithms:} SVM, nearest neighbors, random forest,
17+
18+
19+
20+
\textbf{2. Regression}
21+
22+
* \textbf{Description:} Predicting a continuous-valued attribute associated with an object.
23+
* \textbf{Applications:} Drug response, Stock prices.
24+
* \textbf{Algorithms:} SVR, ridge regression, Lasso,
2525

26-
\end{itemize}
27-
\bigskip
28-
\noindent \textbf{3. Clustering}
2926

30-
\begin{itemize}
31-
\item \noindent \textbf{Description: } Automatic grouping of similar objects into sets.
32-
\item \noindent \textbf{Applications:} Customer segmentation, Grouping experiment outcomes
33-
\item \noindent \textbf{Algorithms:} k-Means, spectral clustering, mean-shift, ...
34-
\end{itemize}
27+
28+
\textbf{3. Clustering}
29+
30+
31+
* \textbf{Description: } Automatic grouping of similar objects into sets.
32+
* \textbf{Applications:} Customer segmentation, Grouping experiment outcomes
33+
* \textbf{Algorithms:} k-Means, spectral clustering, mean-shift, ...
34+
3535

3636
\newpage
37-
\noindent \textbf{4. Dimensionality Reduction}
38-
39-
\begin{itemize}
40-
\item \noindent \textbf{Description: } Reducing the number of random variables to consider.
41-
\item \noindent \textbf{Applications:} Visualization, Increased efficiency
42-
\item \noindent \textbf{Algorithms:} PCA, feature selection, non-negative matrix factorization.
43-
\end{itemize}
44-
\bigskip
45-
\noindent \textbf{5. Model selection}
46-
\begin{itemize}
47-
\item \noindent \textbf{Description: } Comparing, validating and choosing parameters and models.
48-
\item \noindent \textbf{Goal:} Improved accuracy via parameter tuning
49-
\item \noindent \textbf{Modules:} grid search, cross validation, metrics
50-
\end{itemize}
51-
\bigskip
52-
\noindent \textbf{6. Preprocessing}
53-
\begin{itemize}
54-
\item \noindent \textbf{Description:} Feature extraction and normalization.
55-
\item \noindent \textbf{Application:} Transforming input data such as text for use with machine learning algorithms.
56-
\item \noindent \textbf{Modules:} preprocessing, feature extraction.
57-
\end{itemize}
37+
\textbf{4. Dimensionality Reduction}
38+
39+
40+
* \textbf{Description: } Reducing the number of random variables to consider.
41+
* \textbf{Applications:} Visualization, Increased efficiency
42+
* \textbf{Algorithms:} PCA, feature selection, non-negative matrix factorization.
43+
44+
45+
\textbf{5. Model selection}
46+
47+
* \textbf{Description: } Comparing, validating and choosing parameters and models.
48+
* \textbf{Goal:} Improved accuracy via parameter tuning
49+
* \textbf{Modules:} grid search, cross validation, metrics
50+
51+
52+
\textbf{6. Preprocessing}
53+
54+
* \textbf{Description:} Feature extraction and normalization.
55+
* \textbf{Application:} Transforming input data such as text for use with machine learning algorithms.
56+
* \textbf{Modules:} preprocessing, feature extraction.
57+
5858
\newpage
5959
\begin{figure}[h!]
6060
\centering

02-skltopics.pdf

-253 KB
Binary file not shown.

02-skltopics.tex

+68-73
Original file line numberDiff line numberDiff line change
@@ -1,121 +1,116 @@
1-
\documentclass[MASTER.tex]{subfiles}
2-
\begin{document}
3-
4-
5-
\begin{frame}
6-
\huge
1+
72
\[ \mbox{Machine Learning with Python} \]
8-
\end{frame}
93

10-
%===========================================================%%=======================================================================%
11-
\begin{frame}
12-
\Large
4+
5+
<p>%=======================================================================%
6+
7+
138
\textbf{Machine Learning}
14-
\begin{itemize}
15-
\item Machine Learning is a discipline involving algorithms designed to find patterns in and make predictions about data.
16-
\item It is nearly ubiquitous in our world today, and used in everything from web searches to financial forecasts to studies of the nature of the Universe. \item This workshop will cover an introduction to scikit-learn, a python machine learning package, and to the central concepts of Machine Learning.
17-
\end{itemize}
9+
10+
* Machine Learning is a discipline involving algorithms designed to find patterns in and make predictions about data.
11+
* It is nearly ubiquitous in our world today, and used in everything from web searches to financial forecasts to studies of the nature of the Universe. * This workshop will cover an introduction to scikit-learn, a python machine learning package, and to the central concepts of Machine Learning.
12+
13+
1814

1915

20-
\end{frame}
2116
%=======================================================================%
22-
\begin{frame}
23-
\Large \textbf{Machine Learning}\\
17+
18+
\textbf{Machine Learning}\\
2419
We will introduce the basic categories of learning problems and how to implement them using scikit-learn.
2520
% From this foundation, we will explore practical examples of machine learning using real-world data, from handwriting analysis to automated classification of astronomical images.
2621

27-
\begin{itemize}
28-
\item Regression : Predicting Numeric Values
29-
\item Classification : Predicting Categories
30-
\item Clustering : assigning instances to groups.
31-
\end{itemize}
32-
\end{frame}
22+
23+
* Regression : Predicting Numeric Values
24+
* Classification : Predicting Categories
25+
* Clustering : assigning instances to groups.
26+
27+
3328
%=======================================================================%
34-
\begin{frame}[fragile]
29+
3530
\textbf{Getting ready}
3631
The datasets in scikit-learn are contained within the datasets module. Use the following
3732
command to import these datasets:
38-
\begin{framed}
33+
<pre>
3934
\begin{verbatim}
4035
>>> from sklearn import datasets
4136
>>> import numpy as np
4237
\end{verbatim}
4338
\end{framed}
4439

45-
\end{frame}
40+
4641
%======================================================================== %
47-
\begin{frame}
42+
4843
\begin{figure}
4944
\centering
5045
\includegraphics[width=1.2\linewidth]{images/SKLsite}
5146

5247
\end{figure}
5348

54-
\end{frame}
49+
5550
%=======================================================================%
56-
\begin{frame}
57-
\LARGE
51+
52+
5853
\textbf{Classification}
59-
\begin{itemize}
60-
\item \textbf{Description:} Identifying to which category an object belongs to.
61-
\item \textbf{Applications:} Spam detection, Image recognition.
62-
\item \textbf{Algorithms:} SVM, nearest neighbors, random forest,
63-
\end{itemize}
6454

65-
\end{frame}
55+
* \textbf{Description:} Identifying to which category an object belongs to.
56+
* \textbf{Applications:} Spam detection, Image recognition.
57+
* \textbf{Algorithms:} SVM, nearest neighbors, random forest,
58+
59+
60+
6661
%=======================================================================%
67-
\begin{frame}
68-
\LARGE
62+
63+
6964
\textbf{Regression}
70-
\begin{itemize}
71-
\item \textbf{Description:} Predicting a continuous-valued attribute associated with an object.
72-
\item \textbf{Applications:} Drug response, Stock prices.
73-
\item \textbf{Algorithms:} SVR, ridge regression, Lasso,
7465

75-
\end{itemize}
66+
* \textbf{Description:} Predicting a continuous-valued attribute associated with an object.
67+
* \textbf{Applications:} Drug response, Stock prices.
68+
* \textbf{Algorithms:} SVR, ridge regression, Lasso,
69+
70+
71+
7672

77-
\end{frame}
7873
%=======================================================================%
79-
\begin{frame}
80-
\LARGE
74+
75+
8176
\textbf{Clustering}\\
8277

8378
Automatic grouping of similar objects into sets.
8479
\begin{description}
85-
\item[Applications:] Customer segmentation, Grouping experiment outcomes
86-
\item[Algorithms:] k-Means, spectral clustering, mean-shift, ...
80+
* [Applications:] Customer segmentation, Grouping experiment outcomes
81+
* [Algorithms:] k-Means, spectral clustering, mean-shift, ...
8782
\end{description}
88-
\end{frame}
83+
8984
%=======================================================================%
90-
\begin{frame}
91-
\LARGE
85+
86+
9287
\textbf{Dimensionality Reduction}\\
9388

94-
\begin{itemize}
95-
\item \textbf{Description: } Reducing the number of random variables to consider.
96-
\item \textbf{Applications:} Visualization, Increased efficiency
97-
\item \textbf{Algorithms:} PCA, feature selection, non-negative matrix factorization.
98-
\end{itemize}
99-
\end{frame}
89+
90+
* \textbf{Description: } Reducing the number of random variables to consider.
91+
* \textbf{Applications:} Visualization, Increased efficiency
92+
* \textbf{Algorithms:} PCA, feature selection, non-negative matrix factorization.
93+
94+
10095
%=======================================================================%
101-
\begin{frame}
102-
\LARGE
96+
97+
10398
\textbf{Model selection}\\
104-
\begin{itemize}
105-
\item \textbf{Description: } Comparing, validating and choosing parameters and models.
106-
\item \textbf{Goal:} Improved accuracy via parameter tuning
107-
\item \textbf{Modules:} grid search, cross validation, metrics
108-
\end{itemize}
109-
\end{frame}
99+
100+
* \textbf{Description: } Comparing, validating and choosing parameters and models.
101+
* \textbf{Goal:} Improved accuracy via parameter tuning
102+
* \textbf{Modules:} grid search, cross validation, metrics
103+
104+
110105
%=======================================================================%
111-
\begin{frame}
112-
\LARGE
106+
107+
113108
\textbf{Preprocessing}\\
114-
\begin{itemize}
115-
\item \textbf{Description:} Feature extraction and normalization.
116-
\item \textbf{Application:} Transforming input data such as text for use with machine learning algorithms.
117-
\item \textbf{Modules:} preprocessing, feature extraction.
118-
\end{itemize}
119-
\end{frame}
109+
110+
* \textbf{Description:} Feature extraction and normalization.
111+
* \textbf{Application:} Transforming input data such as text for use with machine learning algorithms.
112+
* \textbf{Modules:} preprocessing, feature extraction.
113+
114+
120115

121116
\end{document}

07-SKL-Classification-Notes.pdf

-681 KB
Binary file not shown.

0 commit comments

Comments
 (0)