-
Notifications
You must be signed in to change notification settings - Fork 32
/
train.py
61 lines (55 loc) · 2.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
'''
Original souce code: https://github.com/ZhihengCV/Bayesian-Crowd-Counting
'''
from utils.regression_trainer import RegTrainer
import argparse
import os
import torch
args = None
def parse_args():
parser = argparse.ArgumentParser(description='Train ')
parser.add_argument('--data-dir', default='',
help='training data directory')
parser.add_argument('--save-dir', default='',
help='directory to save models.')
# To reproduce, it would be helpful to try lr=5e-4, 1e-4, and 5e-5 since the training process could be noisy.
parser.add_argument('--lr', type=float, default=5e-4,
help='the initial learning rate')
parser.add_argument('--weight-decay', type=float, default=1e-4,
help='the weight decay')
parser.add_argument('--resume', default='',
help='the path of resume training model')
parser.add_argument('--max-model-num', type=int, default=1,
help='max models num to save ')
parser.add_argument('--max-epoch', type=int, default=1200,
help='max training epoch')
parser.add_argument('--val-epoch', type=int, default=5,
help='the num of steps to log training information')
parser.add_argument('--val-start', type=int, default=600,
help='the epoch start to val')
parser.add_argument('--batch-size', type=int, default=5,
help='train batch size')
parser.add_argument('--device', default='0', help='assign device')
parser.add_argument('--num-workers', type=int, default=8,
help='the num of training process')
parser.add_argument('--is-gray', type=bool, default=False,
help='whether the input image is gray')
parser.add_argument('--crop-size', type=int, default=512,
help='the crop size of the train image')
parser.add_argument('--downsample-ratio', type=int, default=2,
help='downsample ratio')
parser.add_argument('--use-background', type=bool, default=True,
help='whether to use background modelling')
parser.add_argument('--sigma', type=float, default=8.0,
help='sigma for likelihood')
parser.add_argument('--background-ratio', type=float, default=1.0,
help='background ratio')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
torch.backends.cudnn.benchmark = True
os.environ['CUDA_VISIBLE_DEVICES'] = args.device.strip() # set vis gpu
trainer = RegTrainer(args)
trainer.setup()
trainer.train()