-
Notifications
You must be signed in to change notification settings - Fork 6
/
madgrad_wd.py
198 lines (158 loc) · 7.29 KB
/
madgrad_wd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# modifications - 4/4/2021 @lessw2020 (decay issue spotted by @nestordemeure )
# weight decay has been implemented AdamW style instead of the original madgrad Adam style.
# in initial image classification testing, this outperformed 0 weight decay or original style weight decay.
# closure is checked if callable or not since some code passes loss directly, rather than in closure param
import math
from typing import Collection, TYPE_CHECKING, Any, Callable, Optional
import torch
import torch.optim
import collections
if TYPE_CHECKING:
from torch.optim.optimizer import _params_t
else:
_params_t = Any
class madgrad_wd(torch.optim.Optimizer):
"""
MADGRAD_: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic
Optimization.
.. _MADGRAD: https://arxiv.org/abs/2101.11075
MADGRAD is a general purpose optimizer that can be used in place of SGD or
Adam may converge faster and generalize better. Currently GPU-only.
Typically, the same learning rate schedule that is used for SGD or Adam may
be used. The overall learning rate is not comparable to either method and
should be determined by a hyper-parameter sweep.
MADGRAD requires less weight decay than other methods, often as little as
zero. Momentum values used for SGD or Adam's beta1 should work here also.
On sparse problems both weight_decay and momentum should be set to 0.
Arguments:
params (iterable):
Iterable of parameters to optimize or dicts defining parameter groups.
lr (float):
Learning rate (default: 1e-2).
momentum (float):
Momentum value in the range [0,1) (default: 0.9).
weight_decay (float):
Weight decay, i.e. a L2 penalty (default: 0).
eps (float):
Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-6).
"""
def __init__(
self,
params: _params_t,
lr: float = 1e-2,
momentum: float = 0.9,
weight_decay: float = 0,
eps: float = 1e-6,
):
if momentum < 0 or momentum >= 1:
raise ValueError(f"Momentum {momentum} must be in the range [0,1]")
if lr <= 0:
raise ValueError(f"Learning rate {lr} must be positive")
if weight_decay < 0:
raise ValueError(f"Weight decay {weight_decay} must be non-negative")
if eps < 0:
raise ValueError(f"Eps must be non-negative")
defaults = dict(lr=lr, eps=eps, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self) -> bool:
return False
@property
def supports_flat_params(self) -> bool:
return True
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None and isinstance(closure, collections.Callable):
loss = closure()
# step counter must be stored in state to ensure correct behavior under
# optimizer sharding
if "k" not in self.state:
self.state["k"] = torch.tensor([0], dtype=torch.long)
k = self.state["k"].item()
for group in self.param_groups:
eps = group["eps"]
lr = group["lr"] + eps
decay = group["weight_decay"]
momentum = group["momentum"]
ck = 1 - momentum
lamb = lr * math.pow(k + 1, 0.5)
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
if "grad_sum_sq" not in state:
state["grad_sum_sq"] = torch.zeros_like(p.data).detach()
state["s"] = torch.zeros_like(p.data).detach()
if momentum != 0:
state["x0"] = torch.clone(p.data).detach()
if momentum != 0.0 and grad.is_sparse:
raise RuntimeError(
"momentum != 0 is not compatible with sparse gradients"
)
grad_sum_sq = state["grad_sum_sq"]
s = state["s"]
# Apply weight decay - L2 / AdamW style
if decay:
p.data.mul_(1 - lr * decay)
""" original impl:
if decay != 0:
if grad.is_sparse:
raise RuntimeError("weight_decay option is not compatible with sparse gradients")
grad.add_(p.data, alpha=decay)
"""
if grad.is_sparse:
grad = grad.coalesce()
grad_val = grad._values()
p_masked = p.sparse_mask(grad)
grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad)
s_masked = s.sparse_mask(grad)
# Compute x_0 from other known quantities
rms_masked_vals = grad_sum_sq_masked._values().pow(1 / 3).add_(eps)
x0_masked_vals = p_masked._values().addcdiv(
s_masked._values(), rms_masked_vals, value=1
)
# Dense + sparse op
grad_sq = grad * grad
grad_sum_sq.add_(grad_sq, alpha=lamb)
grad_sum_sq_masked.add_(grad_sq, alpha=lamb)
rms_masked_vals = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps)
s.add_(grad, alpha=lamb)
s_masked._values().add_(grad_val, alpha=lamb)
# update masked copy of p
p_kp1_masked_vals = x0_masked_vals.addcdiv(
s_masked._values(), rms_masked_vals, value=-1
)
# Copy updated masked p to dense p using an add operation
p_masked._values().add_(p_kp1_masked_vals, alpha=-1)
p.data.add_(p_masked, alpha=-1)
else:
if momentum == 0:
# Compute x_0 from other known quantities
rms = grad_sum_sq.pow(1 / 3).add_(eps)
x0 = p.data.addcdiv(s, rms, value=1)
else:
x0 = state["x0"]
# Accumulate second moments
grad_sum_sq.addcmul_(grad, grad, value=lamb)
rms = grad_sum_sq.pow(1 / 3).add_(eps)
# Update s
s.data.add_(grad, alpha=lamb)
# Step
if momentum == 0:
p.data.copy_(x0.addcdiv(s, rms, value=-1))
else:
z = x0.addcdiv(s, rms, value=-1)
# p is a moving average of z
p.data.mul_(1 - ck).add_(z, alpha=ck)
self.state["k"] += 1
return loss