-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_cnn2.py
252 lines (212 loc) · 10.3 KB
/
main_cnn2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time, pickle
from torch.autograd import Variable
import random
import argparse
from statistics import mean
import Model_crf2
import DataLoader
import optim_custorm
from Layer.CRF_Layer import *
#from logger import Logger
import util.cal_f1
from config import *
parser = argparse.ArgumentParser(description='multi_tagger')
parser.add_argument('--gpu', type=str, default='20', help='# of machine')
parser.add_argument('--mode', type=str, default='train', help='mode')
parser.add_argument('--optim', type=str, default='sgd', help='optim')
parser.add_argument('--decay', type=str, default='normal', help='decay')
parser.add_argument('--dropout', type=float, default=0.3, help='dropout')
parser.add_argument('--weight', type=float, default=.3, help='weight')
parser.add_argument('--momentum', type=float, default=.9, help='momentum')
args = parser.parse_args()
pkl_path = IO["pkl_path"]
model_path = IO["model_path"] + args.gpu
def extract_data(data_holder, name):
data = [iter(item[name]) for item in data_holder]
lens = [len(i) for i in data]
return data, lens
def sample_idx(idx_list, count_list, lens_list):
idx = random.choice(idx_list)
count_list[idx] += 1
if count_list[idx] == lens_list[idx]:
idx_list.remove(idx)
return idx, idx_list, count_list
def show_result(list1, list2, list3, id2task, logger=None, step=None):
indicator = ["prec", "rec", "F1"]
for i, t in enumerate(zip(list1, list2, list3)):
print("%s prec: %f, rec: %f, F1: %f" %(id2task[i], t[0]*100, t[1]*100, t[2]*100))
#for idx, idc in enumerate(indicator):
# logger.scalar_summary(id2task[i]+"_"+idc, t[idx]*100, step+1)
def main():
data_holder, task2id, id2task, num_feat, num_voc, num_char, tgt_dict, embeddings = DataLoader.multitask_dataloader(pkl_path, num_task=num_task, batch_size=BATCH_SIZE)
para = model_para
task2label = {"conll2000": "chunk", "unidep": "POS", "conll2003": "NER"}
#task2label = {"conll2000": "chunk", "wsjpos": "POS", "conll2003": "NER"}
#logger = Logger('./logs/'+str(args.gpu))
para["id2task"] = id2task
para["n_feats"] = num_feat
para["n_vocs"] = num_voc
para["n_tasks"] = num_task
para["out_size"] = [len(tgt_dict[task2label[id2task[ids]]]) for ids in range(num_task)]
para["n_chars"] = num_char
model = Model_crf2.build_model_cnn(para)
model.Word_embeddings.apply_weights(embeddings)
params = list(filter(lambda p: p.requires_grad, model.parameters()))
num_params = sum(p.numel() for p in model.parameters())
print(model)
print("Num of paras:", num_params)
print(model.concat_flag)
def lr_decay(optimizer, epoch, decay_rate=0.9, init_lr=0.015):
lr = init_lr/(1+decay_rate*epoch)
print(" Learning rate is set as:", lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
def exp_lr_decay(optimizer, epoch, decay_rate=0.05, init_lr=0.015):
lr = init_lr * decay_rate ** epoch
print(" Learning rate is set as:", lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
if args.optim == "noam":
model_optim = optim_custorm.NoamOpt(para["d_hid"], 1, 1000, torch.optim.Adam(params, lr=0.0, betas=(0.9, 0.98), eps=1e-9, weight_decay=L2))
args.decay = None
elif args.optim == "sgd":
model_optim = optim.SGD(params, lr=0.015, momentum=args.momentum, weight_decay=1e-8)
if args.mode == "train":
best_F1 = 0
if not para["crf"]:
calculate_loss = nn.NLLLoss()
else:
calculate_loss = [CRFLoss_vb(len(tgt_dict[task2label[id2task[idx]]])+2, len(tgt_dict[task2label[id2task[idx]]]), len(tgt_dict[task2label[id2task[idx]]])+1) for idx in range(num_task)]
if USE_CUDA:
for x in calculate_loss:
x = x.cuda()
print("Start training...")
print('-' * 60)
KLLoss = nn.KLDivLoss()
start_point = time.time()
for epoch_idx in range(NUM_EPOCH):
if args.decay == "exp":
model_optim = exp_lr_decay(model_optim, epoch_idx)
elif args.decay == "normal":
model_optim = lr_decay(model_optim, epoch_idx)
Pre, Rec, F1, loss_list = run_epoch(model, data_holder, model_optim, calculate_loss, KLLoss, para, epoch_idx, id2task)
use_time = time.time() - start_point
if num_task == 3:
if loss_list[task2id["conll2003"]] < min(loss_list[task2id["conll2000"]], loss_list[task2id["unidep"]]):
args.weight = args.weight * max(loss_list[task2id["conll2000"]], loss_list[task2id["unidep"]]) / loss_list[task2id["conll2003"]]
print("Change weight to %f at epoch_idx %d:" %(args.weight, epoch_idx))
print("Time using: %f mins" %(use_time/60))
if not best_F1 or best_F1 < F1:
best_F1 = F1
Model_crf2.save_model(model_path, model, para)
print('*' * 60)
print("Save model with average Pre: %f, Rec: %f, F1: %f on dev set." %(Pre, Rec, F1))
save_idx = epoch_idx
print('*' * 60)
print("save model at epoch:", save_idx)
else:
para_path = os.path.join(path, 'para.pkl')
with open(para_path, "wb") as f:
para_save = pickle.load(f)
model = Model_crf2.build_model(para_save)
model = Model_crf2.read_model(model_path, model)
prec_list, rec_list, f1_list = infer(model, data_holder, "test")
def wrap_variable(flag, *args):
return [Variable(tensor, volatile=flag).cuda() if USE_CUDA else Variable(tensor) for tensor in args]
def update_log(model, logger, loss, step):
# 1. Log scalar values (scalar summary)
info = { 'loss': loss.data[0]}
for tag, value in info.items():
logger.scalar_summary(tag, value, step+1)
# 2. Log values and gradients of the parameters (histogram summary)
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
logger.histo_summary(tag, value.data.cpu().numpy(), step+1)
logger.histo_summary(tag+'/grad', value.grad.data.cpu().numpy(), step+1)
def run_epoch(model, data_holder, model_optim, calculate_loss, KLLoss, para, epoch_idx, id2task):####
model.train()
train_data, train_lens = extract_data(data_holder, "train")
idx_list = [idx for idx in range(len(train_data))]
count_list = [0 for i in range(len(train_data))]
total_loss = 0
loss_list = [0] * len(id2task)
for i in range(sum(train_lens)):
start_time = time.time()
idx, idx_list, count_list = sample_idx(idx_list, count_list, train_lens)
model.zero_grad()
src_seqs, src_masks, src_feats, tgt_seqs, tgt_masks, src_chars, _ = next(train_data[idx])
src_seqs, src_masks, src_feats, tgt_seqs, tgt_masks, src_chars = wrap_variable(False, src_seqs, src_masks, src_feats, tgt_seqs, tgt_masks, src_chars)
batch_size, seq_len = src_seqs.size()
neglog, h_p, h_s = model(src_seqs, src_masks, src_feats, src_chars,
tgt_seqs, tgt_masks, idx)
if para["crf"]:
loss = - neglog
else:
loss = calculate_loss(neglog.view(batch_size*seq_len, -1), tgt_seqs.view(batch_size*seq_len))*(batch_size*seq_len)/torch.sum(tgt_masks)
l2_reg = None
###
#reg_s_p = KLLoss(torch.log(h_p), h_s)
loss = loss_pre #- 0.000001*reg_s_p
###
'''
for W in model.parameters():
if l2_reg is None:
l2_reg = W.norm(2)
else:
l2_reg = l2_reg + W.norm(2)
'''
#if id2task[idx] == "unidep":
#loss = loss * 2 #+ .000002 * l2_reg
####loss has problem
if id2task[idx] != "conll2003":
#loss = loss * args.weight
pass
loss_list[idx] += loss.detach().cpu().data[0]
try:
loss.backward()
except:
pass
total_loss += loss.detach()
torch.nn.utils.clip_grad_norm(model.parameters(), CLIP)
lr_now = model_optim.step()
if i % PRINT_EVERY == 0 and i:
using_time = time.time() - start_time
print('| ep %2d | %4d/%5d btcs | ms/btc %4.4f | loss %5.7f |' %(epoch_idx+1, i, sum(train_lens), using_time * 1000 / (PRINT_EVERY*batch_size), total_loss/PRINT_EVERY))
#update_log(model, logger, total_loss, i)
total_loss = 0
prec_list_dev, rec_list_dev, f1_list_dev = infer(model, data_holder, "dev")
prec_list_test, rec_list_test, f1_list_test = infer(model, data_holder, "test")
print('-' * 60)
print("On dev set:")
show_result(prec_list_dev, rec_list_dev, f1_list_dev, para["id2task"])
print("On test set:")
show_result(prec_list_test, rec_list_test, f1_list_test, para["id2task"])
if args.optim == "noam":
print("learning rate is ", lr_now)
for i, x in enumerate(loss_list):
print(id2task[i] + " loss: ", x)
return mean(prec_list_dev), mean(rec_list_dev), mean(f1_list_dev), loss_list
#def infer(model, packer_list, evaluator_list, data_holder, name):
def infer(model, data_holder, name):
model.eval()
dev_data, _ = extract_data(data_holder, name)
prf_list = []
for i, task in enumerate(dev_data):
confusion_list = []
for idx in range(len(task)):
src_seqs, src_masks, src_feats, tgt_seqs, tgt_masks, src_chars,tgt_list = next(task)
src_seqs, src_masks, src_feats, tgt_seqs, tgt_masks, src_chars = wrap_variable(True, src_seqs, src_masks, src_feats, tgt_seqs, tgt_masks, src_chars)
preds = model.predict(src_seqs, src_masks, src_feats, src_chars,tgt_seqs, tgt_masks, i)
prec_num, prec_den, rec_num, rec_den = util.cal_f1.evaluate_acc(tgt_list, preds)
confusion_list += [prec_num, prec_den, rec_num, rec_den]
prec, rec, f1 = util.cal_f1.eval_f1(sum(confusion_list[0::4]), sum(confusion_list[1::4]), sum(confusion_list[2::4]), sum(confusion_list[3::4]))
prf_list += [prec, rec, f1]
return prf_list[0::3], prf_list[1::3], prf_list[2::3]
if __name__ == '__main__':
main()