-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.py
224 lines (198 loc) · 7.34 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence as pack
from torch.nn.utils.rnn import pad_packed_sequence as unpack
import os
#from Layer.CNN_Layer import *
#from Layer.RNN_Layer import *
from Layer.CRF import *
from Layer.Share_Bilstm_Layer import *
from Layer.Embedding_Layer import *
import util
import pickle
USE_CUDA = torch.cuda.is_available()
class Fc_Layer(nn.Module):
def __init__(self, d_in, d_out, dropout, crf=False, activation=False):
super(Fc_Layer, self).__init__()
self.d_in = d_in
self.d_out = d_out
self.crf = crf
if self.crf:
self.d_out = d_out + 2
self.dropout_p = dropout
self.Dropout = nn.Dropout(dropout)
self.activation = activation
self.fc = nn.Linear(d_in, self.d_out)
def forward(self, inputs):
seq_len, batch_size, d_in = inputs.size()
assert d_in == self.d_in
#inputs = self.Dropout(inputs)
out = self.fc(inputs.contiguous().view(seq_len*batch_size, -1))
if self.activation:
out = F.relu(out)
return out.contiguous().view(seq_len, batch_size, -1)
class Classifier(nn.Module):
def __init__(self, layer, crf=True):
super(Classifier, self).__init__()
self.crf_flag = crf
if crf:
self.crf = layer
else:
self.logsm = nn.LogSoftmax(dim=-1)
def forward(self,
logits,
real_tag,
mask):
seq_len, batchsize, d_in = logits.size()
lens = self.get_lens(mask)
logits = logits.transpose(1, 0) * mask.unsqueeze(-1)
if self.crf_flag:
neglog = self.loglik(real_tag, lens, logits)
return neglog.mean()
else:
neglog = self.logsm(logits)
return neglog
def inference(self,
logits,
mask):
seq_len, batchsize, d_in = logits.size()
lens = self.get_lens(mask)
if self.crf_flag:
logits = logits.transpose(1, 0) * mask.unsqueeze(-1)
scores, preds = self.crf.viterbi_decode(logits, lens)
else:
logits = logits.transpose(1, 0) * mask.unsqueeze(-1)
out = self.logsm(logits)
scores, preds = torch.max(out, dim=-1)
preds = (preds.detach().float() * mask).long()
return scores, preds
def _bilstm_score(self,
logits,
real_tag,
lens):
real_tag_exp = real_tag.unsqueeze(-1)
scores = torch.gather(logits, 2, real_tag_exp).squeeze(-1)
mask = sequence_mask(lens).float()
scores = scores * mask
score = scores.sum(1).squeeze(-1)
return score
def score(self,
real_tag,
lens,
logits):
transition_score = self.crf.transition_score(real_tag, lens)
bilstm_score = self._bilstm_score(logits, real_tag, lens)
score = transition_score + bilstm_score
return score
def loglik(self,
real_tag,
lens,
logits):
norm_score = self.crf(logits, lens)
sequence_score = self.score(real_tag, lens, logits)
loglik = norm_score - sequence_score
return loglik
def get_lens(self, mask):
"""
Arguments:
mask: batch x seqlen
"""
lens = torch.sum(mask, dim=1)
return lens
class Neural_Tagger(nn.Module):
def __init__(self, Word_embeddings, Feature_embeddings,
ShareRNN, FNNlist, Classifierlist, concat_flag):
super(Neural_Tagger, self).__init__()
self.Word_embeddings = Word_embeddings
self.Feature_embeddings = Feature_embeddings
self.ShareRNN = ShareRNN
self.FClist = FNNlist
self.Classifierlist = Classifierlist
self.concat_flag = concat_flag
#self.regulizaion_flag = regulizaion_flag
def forward(self, src_seqs, src_masks, src_feats,
tgt_seqs, tgt_masks,
idx):
taskidx = idx
src_words = src_seqs
src_masks = src_masks
src_feats = src_feats
tgt_seqs = tgt_seqs
tgt_masks = tgt_masks
logits, h_p, h_s = self.encode(src_words, src_masks, src_feats, taskidx)
return self.decode(logits, h_p, h_s, tgt_seqs, src_masks, taskidx)
def encode(self, src_words, src_masks, src_feats, taskidx):
batch_size, seq_len = src_words.size()
word_embeds = self.Word_embeddings(src_words)
feat_embeds = self.Feature_embeddings(src_feats)
inputs = torch.cat((word_embeds, feat_embeds), dim=-1)
h_f, c_f, final_list = self.ShareRNN(inputs, src_masks)
####
if self.concat_flag:
concat_hid = torch.cat((final_list[taskidx], h_f), dim=-1)
else:
concat_hid = final_list[taskidx] + h_f
logits = self.FClist[taskidx](concat_hid)
h_p = final_list[taskidx].detach()
h_ff = h_f.detach()
return logits, h_p, h_ff
def decode(self, logits, h_p, h_s, tgts, src_mask, taskidx):
batch_size, seq_len, d_hid = logits.size()
return self.Classifierlist[taskidx](logits, tgts, src_mask), h_p, h_s
def predict(self, src_seqs, src_masks, src_feats,
tgt_seqs, tgt_masks, idx):
taskidx = idx
src_words = src_seqs
src_masks = src_masks
src_feats = src_feats
tgt_seqs = tgt_seqs
tgt_masks = tgt_masks
logits, _, _ = self.encode(src_words, src_masks, src_feats, taskidx)
scores, preds = self.Classifierlist[taskidx].inference(logits, src_masks)
return scores, preds
def build_model(para):
emsize = para["d_emb"]
d_hid = para["d_hid"]
d_feat = para["d_feat"]
n_layers = para["n_layers"]
dropout = para["dropout"]
n_feats = para["n_feats"]
n_vocs = para["n_vocs"]
n_tasks = para["n_tasks"]
crf_flag = para["crf"]
out_size = para["out_size"]
concat_flag = para["concat_flag"]
print(para)
Word_embeddings = Embedding_Layer(n_vocs, emsize)
Feature_embeddings = Embedding_Layer(n_feats, d_feat)
rnn = StackedLSTMCell(emsize+d_feat, d_hid//2, n_layers, dropout, share=n_tasks)
ShareRNN = BiSLSTM(rnn)
if concat_flag:
d_in_fc = d_hid * 2
else:
d_in_fc = d_hid
FNNlist = nn.ModuleList([Fc_Layer(d_in=d_in_fc, d_out=d_out, dropout=dropout, crf=crf_flag) for d_out in out_size])
if crf_flag:
crf_list = nn.ModuleList([CRF_Layer(d_out) for d_out in out_size])
else:
crf_list = [d_out for d_out in out_size]
Classifierlist = nn.ModuleList([Classifier(layer, crf=crf_flag) for layer in crf_list])
model = Neural_Tagger(Word_embeddings, Feature_embeddings,
ShareRNN, FNNlist, Classifierlist, concat_flag)
if USE_CUDA:
model = model.cuda()
return model
def save_model(path, model, para):
model_path = os.path.join(path, 'model.pt')
torch.save(model.state_dict(), model_path)
para_path = os.path.join(path, 'para.pkl')
with open(para_path, "wb") as f:
pickle.dump(para, f)
def read_model(path, model):
model_path = os.path.join(path, 'model.pt')
model.load_state_dict(torch.load(model_path))
return model