-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathGLMs2pdf.Rmd
138 lines (83 loc) · 2.37 KB
/
GLMs2pdf.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
title: "Linear, Generalized, and Mixed/Multilevel models in R"
author: "Francisco Rodríguez-Sánchez"
date: "https://frodriguezsanchez.net"
aspectratio: 43 # use 169 for wide format
fontsize: 10pt
output:
binb::metropolis:
keep_tex: no
incremental: yes
fig_caption: no
pandoc_args: ["--lua-filter=hideslide.lua"]
urlcolor: blue
linkcolor: blue
header-includes:
- \definecolor{shadecolor}{RGB}{230,230,230}
- \setbeamercolor{frametitle}{bg=gray}
---
```{r knitr_setup, include=FALSE, cache=FALSE}
options(knitr.duplicate.label = "allow")
library("knitr")
### Chunk options ###
## Text results
opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE, size = 'tiny')
## Code decoration
opts_chunk$set(tidy = FALSE, comment = NA, highlight = TRUE, prompt = FALSE, crop = TRUE)
# ## Cache
# opts_chunk$set(cache = TRUE, cache.path = "knitr_output/cache/")
# ## Plots
# opts_chunk$set(fig.path = "knitr_output/figures/")
opts_chunk$set(fig.align = 'center', out.width = '90%')
### Hooks ###
## Crop plot margins
knit_hooks$set(crop = hook_pdfcrop)
## Reduce font size
## use tinycode = TRUE as chunk option to reduce code font size
# see http://stackoverflow.com/a/39961605
knit_hooks$set(tinycode = function(before, options, envir) {
if (before) return(paste0("\n \\", options$size, "\n\n"))
else return("\n\n \\normalsize \n")
})
```
# GLM as unified framework for data analysis
```{r child = 'framework.Rmd'}
```
# Introduction to linear models
```{r child = 'lm_intro.Rmd'}
```
# Linear models
```{r child = 'lm.Rmd'}
```
# Variable and model selection
```{r child = 'model_selection.Rmd'}
```
# Model comparison
```{r child = 'model_comparison_trees.Rmd'}
```
# Regression to the mean
```{r child = 'regression-to-the-mean.Rmd'}
```
# Causal inference
```{r child = 'causal-inference.Rmd'}
```
# Generalised Linear Models
# Binomial GLM (logistic regression)
```{r child = 'glm_binomial.Rmd'}
```
# GLM for count data: Poisson regression
```{r child = 'glm_count.Rmd'}
```
# Modelling zero-inflated count data
```{r child = 'glm_count_zeroinfl.Rmd'}
```
# Mixed / Multilevel models
```{r child = 'mixed_models.Rmd'}
```
-----
```{r echo=FALSE, out.width="100%"}
knitr::include_graphics("images/flowchart.png")
```
## END

Source code and materials: https://github.com/Pakillo/LM-GLM-GLMM-intro