-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathinfer.py
45 lines (35 loc) · 1.2 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, help="Path of model.")
parser.add_argument(
"--config_file", required=True, help="Path of config file.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
args = parse_arguments()
# 配置runtime,加载模型
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model_file = args.model
params_file = ""
config_file = args.config_file
model = fd.vision.segmentation.PaddleSegModel(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
# 预测图片分类结果
im_org = cv2.imread(args.image)
#bmodel 是静态模型,模型输入固定,这里设置为[512, 512]
im = cv2.resize(im_org, [512, 512], interpolation=cv2.INTER_LINEAR)
result = model.predict(im)
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_segmentation(im, result, weight=0.5)
cv2.imwrite("sophgo_img.png", vis_im)