-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
201 lines (164 loc) · 6.72 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import copy
import numpy as np
from collections import defaultdict
import time
from array import array
from tabulate import tabulate
import collections
class Timer():
def __init__(self, name='task', verbose=True):
self.name = name
self.verbose = verbose
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.verbose:
print('[Time] {} consumes {:.4f} s'.format(self.name, time.time() - self.start))
return exc_type is None
def print_seq_len_percentile(seqs, message):
percentiles = [10, 25, 50, 75, 90, 95, 99]
values = np.percentile([len(v) for k, v in seqs.items()], percentiles)
print(message)
print(tabulate([['Percentile'] + percentiles, ['Value'] + values.tolist()]))
def issequence(obj):
if isinstance(obj, str):
return False
return isinstance(obj, collections.Sequence)
class MultiArray(object):
def __init__(self, list_of_typecode, initializer=None):
self.arrays = []
self.list_of_typecode = tuple(list_of_typecode)
if initializer is None:
initializer = [[] for i in range(len(self.list_of_typecode))]
else:
assert len(self.list_of_typecode) == len(initializer)
for typecode, i in zip(self.list_of_typecode, initializer):
self.arrays.append(array(typecode, i))
def append(self, item):
if len(self.arrays) > 1:
assert len(item) == len(self.arrays)
for array, i in zip(self.arrays, item):
array.append(i)
else:
self.arrays[0].append(item)
def __getitem__(self, index_or_slice):
if isinstance(index_or_slice, slice):
return MultiArray(self.list_of_typecode, [array[index_or_slice] for array in self.arrays])
else:
if len(self.arrays) > 1:
return tuple(array[index_or_slice] for array in self.arrays)
else:
return self.arrays[0][index_or_slice]
def __add__(self, other):
assert len(self.list_of_typecode) == len(other.list_of_typecode)
assert len(self.arrays) == len(other.arrays)
arrays = [a + b for (a, b) in zip(self.arrays, other.arrays)]
return MultiArray(self.list_of_typecode, arrays)
def __len__(self):
return len(self.arrays[0])
def __reversed__(self):
return MultiArray(self.list_of_typecode, [reversed(array) for array in self.arrays])
def __copy__(self):
return MultiArray(self.list_of_typecode, [copy.copy(array) for array in self.arrays])
def __iter__(self):
if len(self.arrays) > 1:
return zip(*self.arrays)
else:
return (a for a in self.arrays)
def __repr__(self):
return repr(self.arrays)
def create_array(typecode='i'):
return array(typecode, [])
def create_multiarray(typecode=('i', 'i')):
return MultiArray(typecode)
def array_like(ref):
if isinstance(ref, MultiArray):
return MultiArray(list_of_typecode=ref.list_of_typecode)
elif isinstance(ref, array):
return array(ref.typecode)
elif isinstance(ref, list):
return list()
def train_val_test_partition(User):
user_train = {}
user_valid = {}
user_test = {}
for user in User:
nfeedback = len(User[user])
if nfeedback < 3:
# user_train[user] = np.array(User[user], dtype=np.int32)
user_train[user] = User[user]
user_valid[user] = array_like(User[user])
user_test[user] = array_like(User[user])
else:
# user_train[user] = np.array(User[user][:-2], dtype=np.int32)
user_train[user] = User[user][:-2]
user_valid[user] = array_like(User[user])
user_valid[user].append(User[user][-2])
user_test[user] = array_like(User[user])
user_test[user].append(User[user][-1])
return user_train, user_valid, user_test
def load_hstu_ml_1m(fname, args):
usernum = 0
itemnum = 0
User = defaultdict(list)
import pandas as pd
ratings = pd.read_csv('data/%s.csv' % fname, sep=',')
item_to_id = {}
for row in ratings.iterrows():
row = row[1]
user_id = int(row.user_id)
usernum = max(user_id, usernum)
sequence_item_ids = eval(row.sequence_item_ids)
if isinstance(sequence_item_ids, int):
sequence_item_ids = [sequence_item_ids, ]
else:
sequence_item_ids = list(sequence_item_ids)
sequence = []
if args.remap_hstu_ml_1m:
for item_id in sequence_item_ids:
if item_id in item_to_id:
sequence.append(item_to_id[item_id])
else:
itemnum += 1
item_to_id[item_id] = itemnum
sequence.append(item_to_id[item_id])
else:
sequence = sequence_item_ids
itemnum = max(itemnum, max(sequence))
if args.load_timestamp:
timestamp = eval(row.sequence_timestamps)
if isinstance(timestamp, int):
timestamp = [timestamp, ]
else:
timestamp = list(timestamp)
sequence = MultiArray(('i', 'i'), initializer=(sequence, timestamp))
User[user_id] = sequence
print('user_num: {}'.format(usernum))
print('item_num: {}'.format(itemnum))
print('Total number of interactions in train + val: {}'.format(sum([len(v) for v in User.values()])))
print('Average sequence length of train + val: {:.2f}'.format(sum([len(v) for v in User.values()]) / len(User.values())))
print_seq_len_percentile(User, message='Sequence length percentile in train + val: ')
user_train = {}
user_valid = {}
for user in User:
nfeedback = len(User[user])
if nfeedback < 3:
# user_train[user] = np.array(User[user], dtype=np.int32)
user_train[user] = User[user]
user_valid[user] = array_like(User[user])
else:
# user_train[user] = np.array(User[user][:-2], dtype=np.int32)
user_train[user] = User[user][:-1]
user_valid[user] = array_like(User[user])
user_valid[user].append(User[user][-1])
return [user_train, user_valid, None, usernum, itemnum]
def print_item_frequency_percentile(frequencies):
percentiles = [10, 25, 50, 75, 90]
values = np.percentile(frequencies, percentiles)
print('Item frequency percentile: ')
print(tabulate([['Percentile'] + percentiles, ['Value'] + values.tolist()]))
def print_percentile(values):
percentiles = [10, 25, 50, 75, 90]
values = np.percentile(values, percentiles)
print(tabulate([['Percentile'] + percentiles, ['Value'] + values.tolist()]))