-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
242 lines (215 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import time
import argparse
import math
import random
from collections import OrderedDict
import tensorflow as tf
import util
from sampler import WarpSampler
from model import Model
from tqdm import tqdm
from tabulate import tabulate
from util import print_seq_len_percentile, Timer
from evaluator import exact_evaluate
from loguru import logger
import json
import psutil
# from tensorflow.python.profiler import model_analyzer
# from tensorflow.python.profiler import option_builder
def str2bool(s):
if s not in {'False', 'True', '0', '1'}:
raise ValueError('Not a valid boolean string')
if s == 'True' or s == '1':
return True
else:
return False
def str2ints(s):
values = s.split(',')
values = tuple(map(int, values))
return values
def split_by_comma(s):
return s.split(',')
def add_summary(summary_writer, tag, value, global_step):
summary_writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]),
global_step=global_step)
def train_epochs(args, dataset, model, sess):
[user_train, user_valid, _, usernum, itemnum] = dataset
sampler = WarpSampler(user_train, user_valid, None, usernum, itemnum, batch_size=args.batch_size,
maxlen=args.maxlen, n_workers=args.n_workers, args=args)
num_batch = sampler.length / args.batch_size
num_batch = math.ceil(num_batch)
T = 0.0
t0 = time.time()
training_reports = []
summary_writer = tf.summary.FileWriter(args.train_dir, sess.graph)
with Timer('Training and evaluation'):
try:
for epoch in range(1, args.num_epochs + 1):
for step in tqdm(list(range(num_batch)), total=num_batch, ncols=70, leave=True, unit='b'):
u, seq, interval, pos, neg, extra_negs = sampler.next_batch()
feed_dict = {model.u: u, model.input_seq: seq, model.pos: pos, model.neg: neg,
model.is_training: True, }
if args.load_timestamp:
feed_dict[model.input_interval] = interval
# run_metadata = tf.RunMetadata()
loss, _, summary, global_step = sess.run(
[model.loss, model.train_op, model.merged, model.global_step], feed_dict=feed_dict,
# options=tf.RunOptions(report_tensor_allocations_upon_oom=True)
# options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
# run_metadata=run_metadata
)
# profiler.add_step(step=step, run_meta=run_metadata)
if step % 50 == 0:
summary_writer.add_summary(summary, global_step)
if epoch % args.eval_every == 0:
t1 = time.time() - t0
T += t1
epoch_report = OrderedDict()
exact_t_valid = exact_evaluate(model, dataset, args, sess, mode='valid',
batch_size=int(args.batch_size * args.pred_batch_size_factor),
sample_user_num=args.eval_sample_user_num,
eval_item_not_in_history=args.eval_item_not_in_history)
print('')
print(
'epoch:%d, time: %f(s), valid (NDCG@10: %.4f, HR@10: %.4f)' % (
epoch, T, exact_t_valid[0], exact_t_valid[1]))
global_step = sess.run(model.global_step)
add_summary(summary_writer, 'valid/NDCG10', exact_t_valid[0], global_step)
add_summary(summary_writer, 'valid/HR@10', exact_t_valid[1], global_step)
epoch_report['epoch'] = epoch
epoch_report['time'] = T
epoch_report['valid/NDCG@10'] = exact_t_valid[0]
epoch_report['valid/HR@10'] = exact_t_valid[1]
if len(exact_t_valid) >= 4:
print(
'epoch:%d, time: %f(s), valid (NDCG@100: %.4f, HR@100: %.4f)' % (
epoch, T, exact_t_valid[2], exact_t_valid[3],))
add_summary(summary_writer, 'valid/NDCG100', exact_t_valid[2], global_step)
add_summary(summary_writer, 'valid/HR@100', exact_t_valid[3], global_step)
epoch_report['valid/NDCG100'] = exact_t_valid[2]
epoch_report['valid/HR@100'] = exact_t_valid[3]
if len(exact_t_valid) == 6:
print(
'epoch:%d, time: %f(s), valid (NDCG@200: %.4f, HR@200: %.4f)' % (
epoch, T, exact_t_valid[4], exact_t_valid[5],))
add_summary(summary_writer, 'valid/NDCG200', exact_t_valid[4], global_step)
add_summary(summary_writer, 'valid/HR@200', exact_t_valid[5], global_step)
epoch_report['valid/NDCG200'] = exact_t_valid[4]
epoch_report['valid/HR@200'] = exact_t_valid[5]
training_reports.append(epoch_report)
t0 = time.time()
except Exception:
import traceback
traceback.print_exc()
import sys
# et, value, tb = sys.exc_info()
# import pdb
# pdb.post_mortem(tb)
sampler.close()
exit(1)
sampler.close()
print("Done training")
print(tabulate(training_reports, headers='keys', floatfmt='.4f'))
with open(os.path.join(args.train_dir, 'validation.json'), 'w') as f:
json.dump(training_reports, f, ensure_ascii=True)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True)
parser.add_argument('--remap_hstu_ml_1m', default=False, type=str2bool)
parser.add_argument('--load_timestamp', default=False, type=str2bool)
parser.add_argument('--personalize_timestamp_min_diff', default=1, type=int, help='Unit: second')
parser.add_argument('--train_dir', required=True)
parser.add_argument('--save', default=False, type=str2bool)
parser.add_argument('--num_epochs', default=201, type=int)
parser.add_argument('--eval_every', default=20, type=int)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--exact_evaluate', default=True, type=str2bool)
parser.add_argument('--pred_batch_size_factor', default=2, type=float)
parser.add_argument('--eval_sample_user_num', default=0, type=int)
parser.add_argument('--eval_item_not_in_history', default=False, type=str2bool)
parser.add_argument('--n_workers', default=1, type=int)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--warmup_steps', default=0, type=int)
parser.add_argument('--maxlen', default=50, type=int)
parser.add_argument('--embedding_initializer', default='', type=str, choices=('', 'truncated_normal'))
parser.add_argument('--embedding_scale', default=True, type=str2bool)
parser.add_argument('--hidden_units', default=50, type=int)
parser.add_argument('--positional_embedding', default=True, type=str2bool)
parser.add_argument('--inner_size', default=50, type=int)
parser.add_argument('--inner_act', default='relu', type=str)
parser.add_argument('--inner_dropout', default=True, type=str2bool)
parser.add_argument('--num_blocks', default=2, type=int)
parser.add_argument('--num_heads', default=1, type=int)
parser.add_argument('--context_dropout', default=False, type=str2bool)
parser.add_argument('--pre_norm', default=True, type=str2bool)
parser.add_argument('--post_norm', default=False, type=str2bool)
parser.add_argument('--ffn', default=True, type=str2bool)
parser.add_argument('--normalize_query', default=True, type=str2bool)
parser.add_argument('--overwrite_key_with_query', default=True, type=str2bool)
parser.add_argument('--qkv_projection_initializer', default='None', type=str, choices=('normal', 'None'))
parser.add_argument('--qkv_projection_bias', default=True, type=str2bool)
parser.add_argument('--qkv_projection_activation', default='None', type=str)
parser.add_argument('--value_projection', default=True, type=str2bool)
parser.add_argument('--attention_type', default='dot_product', type=lambda x: x.split(','))
parser.add_argument('--compute_hstu_time_interval', default=False, type=str2bool)
parser.add_argument('--hstu_time_interval_divisor', default=1.0, type=float)
parser.add_argument('--time_interval_attention_max_interval', default=256, type=int)
parser.add_argument('--relative_position_bias_add_item_interaction', default=False, type=str2bool)
parser.add_argument('--scale_attention', default=True, type=str2bool)
parser.add_argument('--attention_activation', default='None', type=str)
parser.add_argument('--attention_normalization', default='softmax', type=str)
parser.add_argument('--time_interval_bias_add_item_interaction', default=True, type=str2bool)
parser.add_argument('--attention_temperature', default=1.0, type=float)
parser.add_argument('--attention_kernel', default='relu', type=str, choices=('relu', 'elu'))
parser.add_argument('--annealing_factor', default=1.0, type=float)
parser.add_argument('--attention_dropout', default=True, type=str2bool)
parser.add_argument('--u_projection', default=False, type=str2bool)
parser.add_argument('--u_projection_initializer', default='None', type=str, choices=('normal', 'None'))
parser.add_argument('--u_projection_bias', default=True, type=str2bool)
parser.add_argument('--linear_projection_and_dropout', default=False, type=str2bool)
parser.add_argument('--dropout_before_linear_projection', default=False, type=str2bool)
parser.add_argument('--item_bias', default=False, type=str2bool)
parser.add_argument('--dropout_rate', default=0.5, type=float)
parser.add_argument('--l2_emb', default=0.0, type=float)
parser.add_argument('--normalize_prediction_embedding', default=False, type=str2bool)
parser.add_argument('--normalize_test_embedding', default=False, type=str2bool)
parser.add_argument('--scale_logits', default=0.0, type=float)
parser.add_argument('--scale_logits_trainable', default=False, type=str2bool)
parser.add_argument('--scale_logits_trainable_max', default=math.log(100), type=float)
parser.add_argument('--loss_type', default='bce', type=str)
parser.add_argument('--optimizer', default='adam', type=str)
parser.add_argument('--weight_decay', default=1e-3, type=float)
parser.add_argument('--adam_beta2', default=0.98, type=float)
args = parser.parse_args()
return args
def main():
args = parse_args()
logger.info('')
logger.info('Start')
train_dir = args.train_dir
if not os.path.isdir(train_dir):
os.makedirs(train_dir)
with open(os.path.join(train_dir, 'args.txt'), 'w') as f:
f.write('\n'.join([str(k) + ',' + str(v) for k, v in sorted(list(vars(args).items()), key=lambda x: x[0])]))
f.close()
with Timer('Load data and preprocess data'):
dataset = util.load_hstu_ml_1m(args.dataset, args)
[user_train, user_valid, _, usernum, itemnum] = dataset
cc = 0.0
for u in user_train:
cc += len(user_train[u])
print('Total number of interactions: {}'.format(cc))
print('Average sequence length: %.2f' % (cc / len(user_train)))
print_seq_len_percentile(user_train, message='Sequence length percentile: ')
model = Model(usernum, itemnum, args)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# config.allow_soft_placement = True
# config.log_device_placement = True
sess = tf.Session(config=config)
sess.run(tf.initialize_all_variables())
if args.num_epochs > 0:
train_epochs(args, dataset, model, sess)
if __name__ == '__main__':
main()