-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrender.py
215 lines (169 loc) · 8.57 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import cv2
import yaml
from tqdm import tqdm
import matplotlib
matplotlib.use('Agg')
import numpy as np
import torch
import torch.nn.functional as F
from modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator
from modules.keypoint_detector import KPDetector, HEEstimator
from modules.discriminator import MultiScaleDiscriminator
from modules.model import ImagePyramide
def load_checkpoints(config_path, checkpoint_path, gen="spade", device='cuda'):
with open(config_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if gen == 'original':
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
elif gen == 'spade':
generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
**config['model_params']['common_params'])
if os.path.isfile(checkpoint_path):
# checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
checkpoint = torch.load(checkpoint_path, map_location='cpu')
generator.load_state_dict(checkpoint['generator'])
kp_detector.load_state_dict(checkpoint['kp_detector'])
he_estimator.load_state_dict(checkpoint['he_estimator'])
print("generator & kp_detector & he_estimator & loaded from: ", checkpoint_path)
generator.eval()
kp_detector.eval()
he_estimator.eval()
discriminator = None
generator.to(device)
kp_detector.to(device)
he_estimator.to(device)
return generator, kp_detector, he_estimator, discriminator, config['train_params']
def headpose_pred_to_degree(pred):
device = pred.device
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
pred = F.softmax(pred, dim=-1)
degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 99
return degree
def get_rotation_matrix(yaw, pitch, roll):
yaw = yaw / 180 * 3.14
pitch = pitch / 180 * 3.14
roll = roll / 180 * 3.14
roll = roll.unsqueeze(1)
pitch = pitch.unsqueeze(1)
yaw = yaw.unsqueeze(1)
pitch_mat = torch.cat([torch.ones_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch),
torch.zeros_like(pitch), torch.cos(pitch), -torch.sin(pitch),
torch.zeros_like(pitch), torch.sin(pitch), torch.cos(pitch)], dim=1)
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
yaw_mat = torch.cat([torch.cos(yaw), torch.zeros_like(yaw), torch.sin(yaw),
torch.zeros_like(yaw), torch.ones_like(yaw), torch.zeros_like(yaw),
-torch.sin(yaw), torch.zeros_like(yaw), torch.cos(yaw)], dim=1)
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
roll_mat = torch.cat([torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll),
torch.sin(roll), torch.cos(roll), torch.zeros_like(roll),
torch.zeros_like(roll), torch.zeros_like(roll), torch.ones_like(roll)], dim=1)
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
rot_mat = torch.einsum('bij,bjk,bkm->bim', pitch_mat, yaw_mat, roll_mat)
return rot_mat
def keypoint_transformation(kp_canonical, he, estimate_jacobian=True, free_view=False, yaw=0, pitch=0, roll=0):
device = kp_canonical['value'].device
kp = kp_canonical['value']
if not free_view:
yaw, pitch, roll = he['yaw'], he['pitch'], he['roll']
yaw = headpose_pred_to_degree(yaw)
pitch = headpose_pred_to_degree(pitch)
roll = headpose_pred_to_degree(roll)
else:
if yaw is not None:
yaw = torch.tensor([yaw]).to(device)
else:
yaw = he['yaw']
yaw = headpose_pred_to_degree(yaw)
if pitch is not None:
pitch = torch.tensor([pitch]).to(device)
else:
pitch = he['pitch']
pitch = headpose_pred_to_degree(pitch)
if roll is not None:
roll = torch.tensor([roll]).to(device)
else:
roll = he['roll']
roll = headpose_pred_to_degree(roll)
t, exp = he['t'], he['exp']
rot_mat = get_rotation_matrix(yaw, pitch, roll)
# keypoint rotation
kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp)
t = t.clone().unsqueeze_(1).repeat(1, kp.shape[1], 1)
kp_t = kp_rotated + t
# add expression deviation
exp = exp.clone().view(exp.shape[0], -1, 3)
kp_transformed = kp_t + exp
if estimate_jacobian:
jacobian = kp_canonical['jacobian']
jacobian_transformed = torch.einsum('bmp,bkps->bkms', rot_mat, jacobian)
else:
jacobian_transformed = None
return {'value': kp_transformed, 'jacobian': jacobian_transformed}
class Renderer(torch.nn.Module):
def __init__(self, config_path, checkpoint_path, gen="spade", device='cuda', pic_size=256):
super(Renderer, self).__init__()
self.generator, self.kp_detector, self.he_estimator, self.discriminator, train_params = load_checkpoints(config_path, checkpoint_path, gen, device=device)
self.scales = train_params['scales']
self.pyramid = ImagePyramide(self.scales, 3)
self.device = device
self.pic_size = pic_size
def forward(self, source, driving, estimate_jacobian=False, extract_driving_only=False, no_need_drv_kp=False):
if extract_driving_only:
if True:
driving = driving.to(self.device)
if no_need_drv_kp:
kp_canical_driving = None
else:
kp_canical_driving = self.kp_detector(driving)
he_driving = self.he_estimator(driving)
return he_driving, kp_canical_driving
if True:
source = source.to(self.device)
driving = driving.to(self.device)
kp_canonical = self.kp_detector(source)
he_source = self.he_estimator(source)
he_driving = self.he_estimator(driving)
kp_source = keypoint_transformation(kp_canonical, he_source, estimate_jacobian)
kp_driving = keypoint_transformation(kp_canonical, he_driving, estimate_jacobian)
out = self.generator(source, kp_source=kp_source, kp_driving=kp_driving)
return out
def forward_kp_he(self, source, kp_canonical, he_source, he_driving, estimate_jacobian=False):
if isinstance(source, torch.Tensor) and source.shape[-1] == self.pic_size:
pass
elif (isinstance(source, list) or isinstance(source, tuple)) and isinstance(source[0], str): # 文件路径
source_tmp = []
for souce_im_path in source:
source_im = cv2.imread(souce_im_path)
if source_im.shape[0] != self.pic_size or source_im.shape[1] != self.pic_size:
source_im = cv2.resize(source_im, (self.pic_size, self.pic_size))
source_im = cv2.cvtColor(source_im, cv2.COLOR_BGR2RGB)
source_im = source_im / 255.
source_tmp.append(source_im)
source = np.array(source_tmp)
source_tmp = []
source = torch.tensor(source, dtype=torch.float32).permute(0, 3, 1, 2).to(self.device)
kp_source = keypoint_transformation(kp_canonical, he_source, estimate_jacobian)
kp_driving = keypoint_transformation(kp_canonical, he_driving, estimate_jacobian)
if True:
out = self.generator(source, kp_source=kp_source, kp_driving=kp_driving)
return out
def forward_img_2_vid(self, source_img, he_source, he_driving_list, num_frames, estimate_jacobian=False):
if True:
kp_canonical_source = self.kp_detector(source_img)
kp_source = keypoint_transformation(kp_canonical_source, he_source, estimate_jacobian)
predictions = []
for i in tqdm(range(num_frames), "Render:"):
kp_driving_single = keypoint_transformation(kp_canonical_source, he_driving_list[i], estimate_jacobian)
if True:
out = self.generator(source_img, kp_source=kp_source, kp_driving=kp_driving_single)
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
return predictions
if __name__ == "__main__":
pass