@@ -70,7 +70,23 @@ class adapt_impl : public extension_point<adapt_impl> {
70
70
// / @param pool Pool of operators
71
71
// / @param optimizer Optimization algorithm
72
72
// / @param gradient Gradient calculation method
73
- // / @param options Additional options for the algorithm
73
+ // / @param options Additional options for the algorithm. Supported Keys:
74
+ // / - "max_iter" (int): Maximum number of iterations [default: 30]
75
+ // / - "grad_norm_tolerance" (double): Convergence tolerance for gradient norm
76
+ // / [default: 1e-5]
77
+ // / - "grad_norm_diff_tolerance" (double): Tolerance for difference between
78
+ // / gradient norms [default: 1e-5]
79
+ // / - "threshold_energy" (double): Energy convergence threshold [default:
80
+ // / 1e-6]
81
+ // / - "initial_theta" (double): Initial value for theta parameter [default:
82
+ // / 0.0]
83
+ // / - "verbose" (bool): Enable detailed output logging [default: false]
84
+ // / - "shots" (int): Number of measurement shots (-1 for exact simulation)
85
+ // / [default: -1]
86
+ // / - "dynamic_start" (string): Optimization mode for the theta parameters at
87
+ // / each iteration.
88
+ // / It can be either "warm", or "cold". [default: "cold"]
89
+ // / - "tol" (double): Tolerance for optimization [default: 1e-12]
74
90
// / @return Result of the ADAPT-VQE algorithm
75
91
virtual result run (const cudaq::qkernel<void (cudaq::qvector<> &)> &initState,
76
92
const spin_op &H, const std::vector<spin_op> &pool,
@@ -88,7 +104,22 @@ class adapt_impl : public extension_point<adapt_impl> {
88
104
// / @param initialState Initial state preparation quantum kernel
89
105
// / @param H Hamiltonian operator
90
106
// / @param poolList Pool of operators
91
- // / @param options Additional options for the algorithm
107
+ // / @param options Additional options for the algorithm. Supported Keys:
108
+ // / - "max_iter" (int): Maximum number of iterations [default: 30]
109
+ // / - "grad_norm_tolerance" (double): Convergence tolerance for gradient norm
110
+ // / [default: 1e-5]
111
+ // / - "grad_norm_diff_tolerance" (double): Tolerance for difference between
112
+ // / gradient norms [default: 1e-5]
113
+ // / - "threshold_energy" (double): Energy convergence threshold [default: 1e-6]
114
+ // / - "initial_theta" (double): Initial value for theta parameter [default:
115
+ // / 0.0]
116
+ // / - "verbose" (bool): Enable detailed output logging [default: false]
117
+ // / - "shots" (int): Number of measurement shots (-1 for exact simulation)
118
+ // / [default: -1]
119
+ // / - "dynamic_start" (string): Optimization mode for the theta parameters at
120
+ // / each iteration.
121
+ // / It can be either "warm", or "cold". [default: "cold"]
122
+ // / - "tol" (double): Tolerance for optimization [default: 1e-12]
92
123
// / @return Result of the ADAPT-VQE algorithm
93
124
static inline adapt::result
94
125
adapt_vqe (const cudaq::qkernel<void (cudaq::qvector<> &)> &initialState,
@@ -106,7 +137,22 @@ adapt_vqe(const cudaq::qkernel<void(cudaq::qvector<> &)> &initialState,
106
137
// / @param H Hamiltonian operator
107
138
// / @param poolList Pool of operators
108
139
// / @param optimizer Custom optimization algorithm
109
- // / @param options Additional options for the algorithm
140
+ // / @param options Additional options for the algorithm. Supported Keys:
141
+ // / - "max_iter" (int): Maximum number of iterations [default: 30]
142
+ // / - "grad_norm_tolerance" (double): Convergence tolerance for gradient norm
143
+ // / [default: 1e-5]
144
+ // / - "grad_norm_diff_tolerance" (double): Tolerance for difference between
145
+ // / gradient norms [default: 1e-5]
146
+ // / - "threshold_energy" (double): Energy convergence threshold [default: 1e-6]
147
+ // / - "initial_theta" (double): Initial value for theta parameter [default:
148
+ // / 0.0]
149
+ // / - "verbose" (bool): Enable detailed output logging [default: false]
150
+ // / - "shots" (int): Number of measurement shots (-1 for exact simulation)
151
+ // / [default: -1]
152
+ // / - "dynamic_start" (string): Optimization mode for the theta parameters at
153
+ // / each iteration.
154
+ // / It can be either "warm", or "cold". [default: "cold"]
155
+ // / - "tol" (double): Tolerance for optimization [default: 1e-12]
110
156
// / @return Result of the ADAPT-VQE algorithm
111
157
static inline adapt::result
112
158
adapt_vqe (const cudaq::qkernel<void (cudaq::qvector<> &)> &initialState,
@@ -125,7 +171,22 @@ adapt_vqe(const cudaq::qkernel<void(cudaq::qvector<> &)> &initialState,
125
171
// / @param poolList Pool of operators
126
172
// / @param optimizer Custom optimization algorithm
127
173
// / @param gradient Gradient calculation method
128
- // / @param options Additional options for the algorithm
174
+ // / @param options Additional options for the algorithm. Supported Keys:
175
+ // / - "max_iter" (int): Maximum number of iterations [default: 30]
176
+ // / - "grad_norm_tolerance" (double): Convergence tolerance for gradient norm
177
+ // / [default: 1e-5]
178
+ // / - "grad_norm_diff_tolerance" (double): Tolerance for difference between
179
+ // / gradient norms [default: 1e-5]
180
+ // / - "threshold_energy" (double): Energy convergence threshold [default: 1e-6]
181
+ // / - "initial_theta" (double): Initial value for theta parameter [default:
182
+ // / 0.0]
183
+ // / - "verbose" (bool): Enable detailed output logging [default: false]
184
+ // / - "shots" (int): Number of measurement shots (-1 for exact simulation)
185
+ // / [default: -1]
186
+ // / - "dynamic_start" (string): Optimization mode for the theta parameters at
187
+ // / each iteration.
188
+ // / It can be either "warm", or "cold". [default: "cold"]
189
+ // / - "tol" (double): Tolerance for optimization [default: 1e-12]
129
190
// / @return Result of the ADAPT-VQE algorithm
130
191
static inline adapt::result
131
192
adapt_vqe (const cudaq::qkernel<void (cudaq::qvector<> &)> &initialState,
0 commit comments