-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathmain.py
230 lines (189 loc) · 7.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import shutil
from typing import Any
from docbuilder import TinyStoriesDownloader
from filters import IncompleteStoryFilter
from helpers import write_jsonl
from modifiers import QuotationUnifier
from nemo_curator import ScoreFilter, Sequential
from nemo_curator.datasets import DocumentDataset
from nemo_curator.filters import RepeatingTopNGramsFilter, WordCountFilter
from nemo_curator.modifiers.pii_modifier import PiiModifier
from nemo_curator.modifiers.unicode_reformatter import UnicodeReformatter
from nemo_curator.modules import ExactDuplicates
from nemo_curator.modules.modify import Modify
from nemo_curator.utils.distributed_utils import get_client
from nemo_curator.utils.file_utils import get_all_files_paths_under
from nemo_curator.utils.script_utils import ArgumentHelper
SCRIPT_DIR_PATH = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(SCRIPT_DIR_PATH, "data")
JSONL_ROOT_DIR = os.path.join(DATA_DIR, "jsonl")
# The TinyStories dataset is split into two files, one for training and one for validation.
# For the purposes of this tutorial, we will use the smaller validation file to demonstrate the curation pipeline.
TINY_STORIES_URL = "https://huggingface.co/datasets/roneneldan/TinyStories/resolve/main/TinyStories-valid.txt"
def download_and_convert_to_jsonl() -> str:
"""
Downloads the TinyStories dataset and converts it to JSONL format.
Returns:
str: The directory path where the JSONL files are saved.
"""
# Download the TinyStories dataset.
downloader = TinyStoriesDownloader(DATA_DIR)
tinystories_val_fp = downloader.download(TINY_STORIES_URL)
# Convert to JSONL files.
jsonl_dir = os.path.join(JSONL_ROOT_DIR, "val")
write_jsonl(tinystories_val_fp, jsonl_dir)
return jsonl_dir
def clean_and_unify(dataset: DocumentDataset) -> DocumentDataset:
"""
Cleans and unifies the given dataset using a set of predefined cleaners.
Args:
dataset (DocumentDataset): The dataset to be cleaned and unified.
Returns:
DocumentDataset: The cleaned and unified dataset.
"""
cleaners = Sequential(
[
# Unify all the quotation marks
Modify(QuotationUnifier()),
# Unify all unicode
Modify(UnicodeReformatter()),
]
)
return cleaners(dataset)
def filter_dataset(dataset: DocumentDataset) -> DocumentDataset:
"""
Filters the given dataset based on various criteria.
Args:
dataset (DocumentDataset): The dataset to be filtered.
Returns:
DocumentDataset: The filtered dataset.
"""
filters = Sequential(
[
ScoreFilter(
WordCountFilter(min_words=80),
text_field="text",
score_field="word_count",
score_type=int,
),
ScoreFilter(IncompleteStoryFilter(), text_field="text", score_type=bool),
ScoreFilter(
RepeatingTopNGramsFilter(n=2, max_repeating_ngram_ratio=0.2),
text_field="text",
score_type=float,
),
ScoreFilter(
RepeatingTopNGramsFilter(n=3, max_repeating_ngram_ratio=0.18),
text_field="text",
score_type=float,
),
ScoreFilter(
RepeatingTopNGramsFilter(n=4, max_repeating_ngram_ratio=0.16),
text_field="text",
score_type=float,
),
]
)
filtered_dataset = filters(dataset)
return filtered_dataset
def redact_pii(dataset: DocumentDataset) -> DocumentDataset:
"""
Redacts personally identifiable information (PII) from a given dataset.
Args:
dataset (DocumentDataset): The dataset containing documents with PII.
Returns:
DocumentDataset: The redacted dataset with PII replaced by a generic value.
"""
redactor = Modify(
PiiModifier(
supported_entities=["PERSON"],
anonymize_action="replace",
device="cpu",
),
)
return redactor(dataset)
def dedupe(dataset: DocumentDataset) -> DocumentDataset:
"""
Remove exact duplicates from the given DocumentDataset.
Args:
dataset (DocumentDataset): The dataset containing documents.
Returns:
DocumentDataset: The deduplicated dataset.
"""
deduplicator = ExactDuplicates(id_field="id", text_field="text", hash_method="md5")
# Find the duplicates
duplicates = deduplicator(dataset)
docs_to_remove = duplicates.df.map_partitions(
lambda x: x[x._hashes.duplicated(keep="first")]
)
# Remove the duplicates using their IDs.
duplicate_ids = list(docs_to_remove.compute().id)
dataset_df = dataset.df
deduped = dataset_df[~dataset_df.id.isin(duplicate_ids)]
return DocumentDataset(deduped)
def run_curation_pipeline(args: Any, jsonl_dir: str) -> None:
"""
Run the curation pipeline on the TinyStories dataset.
Args:
args (Any): Command-line arguments.
jsonl_dir (str): Directory path where the JSONL files are stored.
"""
# Initialize the Dask cluster.
client = get_client(**ArgumentHelper.parse_client_args(args))
print(f"Running curation pipeline on '{jsonl_dir}'...")
files = get_all_files_paths_under(
jsonl_dir, recurse_subdirectories=False, keep_extensions="jsonl"
)
print("Reading the data...")
orig_dataset = DocumentDataset.read_json(files, add_filename=True)
dataset = orig_dataset
curation_steps = Sequential(
[
clean_and_unify,
filter_dataset,
dedupe,
redact_pii,
]
)
dataset = curation_steps(dataset)
print("Executing the pipeline...")
dataset = dataset.persist()
print(f"Original dataset length: {len(orig_dataset.df)}")
print(f"After dataprep: {len(dataset.df)}")
print("Writing the results to disk...")
# Overwrite existing files in the curated directory.
out_path = os.path.join(jsonl_dir, "curated")
if os.path.isdir(out_path):
shutil.rmtree(out_path)
os.makedirs(out_path)
dataset.to_json(out_path, write_to_filename=True)
client.close()
def main():
parser = argparse.ArgumentParser()
args = ArgumentHelper(parser).add_distributed_args().parse_args()
# Limit the total number of workers to ensure we don't run out of memory.
args.n_workers = min(args.n_workers, 4)
# Prepare the download and JSONL directories.
if not os.path.isdir(DATA_DIR):
os.makedirs(DATA_DIR)
if not os.path.isdir(JSONL_ROOT_DIR):
os.makedirs(JSONL_ROOT_DIR)
jsonl_val_dir = download_and_convert_to_jsonl()
run_curation_pipeline(args, jsonl_val_dir)
if __name__ == "__main__":
main()