-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathshuffle_utils.py
96 lines (82 loc) · 2.97 KB
/
shuffle_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cudf
import dask_cuda
import numpy as np
from dask import config
from packaging.version import Version
from nemo_curator._compat import query_planning_enabled
dask_cuda_version = Version(dask_cuda.__version__)
USE_EXCOMMS = (
dask_cuda_version >= Version("23.10") and dask_cuda_version < Version("24.06")
) or dask_cuda_version >= Version("24.08")
def write_partitioned_file(df, output_path, partition_on, batch_id):
if len(df) == 0:
return cudf.Series([True])
cudf.io.parquet.write_to_dataset(
df,
output_path,
partition_cols=[partition_on],
filename=f"batch_{batch_id}.parquet",
)
return cudf.Series([True])
def rearange_by_column_direct(
df,
col,
npartitions,
ignore_index,
excomms_default=USE_EXCOMMS,
):
# Execute a "direct" shuffle operation without staging
if config.get("explicit-comms", excomms_default):
from dask_cuda.explicit_comms.dataframe.shuffle import (
shuffle as explicit_comms_shuffle,
)
# Use explicit comms unless the user has
# disabled it with the dask config system,
# or we are using an older version of dask-cuda
return explicit_comms_shuffle(
df,
[col],
npartitions=npartitions,
ignore_index=ignore_index,
)
elif query_planning_enabled():
from dask_expr._collection import new_collection
from dask_expr._shuffle import RearrangeByColumn
# Use the internal dask-expr API
return new_collection(
RearrangeByColumn(
frame=df.expr,
partitioning_index=col,
npartitions_out=npartitions,
ignore_index=ignore_index,
method="tasks",
# Prevent staged shuffling by setting max_branch
# to the number of input partitions + 1
options={"max_branch": npartitions + 1},
)
)
else:
from dask.dataframe.shuffle import rearrange_by_column
return rearrange_by_column(
df,
col=col,
shuffle_method="tasks",
# Prevent staged shuffling by setting max_branch
# to the number of input partitions + 1
max_branch=npartitions + 1,
npartitions=npartitions,
ignore_index=ignore_index,
)