-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathsparse_tensor.cu
179 lines (165 loc) · 6.81 KB
/
sparse_tensor.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
////////////////////////////////////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (c) 2025, NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////////
#include "matx.h"
// Note that sparse tensor support in MatX is still experimental.
using namespace matx;
int main([[maybe_unused]] int argc, [[maybe_unused]] char **argv)
{
MATX_ENTER_HANDLER();
cudaStream_t stream = 0;
cudaExecutor exec{stream};
//
// Print some formats that are used for the universal sparse tensor
// type. Note that common formats like COO and CSR have good library
// support in e.g. cuSPARSE, but MatX provides a much more general
// way to define the sparse tensor storage through a DSL (see doc).
//
experimental::Scalar::print(); // scalars
experimental::SpVec::print(); // sparse vectors
experimental::COO::print(); // various sparse matrix formats
experimental::CSR::print();
experimental::CSC::print();
experimental::DCSR::print();
experimental::BSR<2,2>::print(); // 2x2 blocks
experimental::COO4::print(); // 4-dim tensor in COO
experimental::CSF5::print(); // 5-dim tensor in CSF
//
// Creates a COO matrix for the following 4x8 dense matrix with 5 nonzero
// elements, using the factory method that uses MatX tensors for the 1-dim
// buffers. The sparse matrix resides in the same memory space as its buffer
// constituents.
//
// | 1, 2, 0, 0, 0, 0, 0, 0 |
// | 0, 0, 0, 0, 0, 0, 0, 0 |
// | 0, 0, 0, 0, 0, 0, 0, 0 |
// | 0, 0, 3, 4, 0, 5, 0, 0 |
//
// tensor_impl_2_f32: SparseTensor{float} Rank: 2, Sizes:[4, 8], Levels:[4, 8]
// format = ( d0, d1 ) -> ( d0 : compressed(non-unique), d1 : singleton )
// space = CUDA managed memory
// nse = 5
// crd[0] = ( 0 0 3 3 3 )
// crd[1] = ( 0 1 2 3 5 )
// values = ( 1.0000e+00 2.0000e+00 3.0000e+00 4.0000e+00 5.0000e+00 )
//
auto vals = make_tensor<float>({5});
auto idxi = make_tensor<int>({5});
auto idxj = make_tensor<int>({5});
vals.SetVals({1, 2, 3, 4, 5});
idxi.SetVals({0, 0, 3, 3, 3});
idxj.SetVals({0, 1, 2, 3, 5});
auto Acoo = experimental::make_tensor_coo(vals, idxi, idxj, {4, 8});
print(Acoo);
//
// A very naive way to convert the sparse matrix back to a dense
// matrix. Note that one should **never** use the ()-operator in
// performance critical code, since sparse storage formats do
// not provide O(1) random access to their elements (compressed
// levels will use some form of search to determine if an element
// is present). Instead, conversions (and other operations) should
// use sparse operations that are tailored for the sparse storage
// format (such as scanning by row for CSR).
//
auto A1 = make_tensor<float>({4, 8});
for (index_t i = 0; i < 4; i++) {
for (index_t j = 0; j < 8; j++) {
A1(i, j) = Acoo(i, j);
}
}
print(A1);
//
// A direct sparse2dense conversion. This is the correct way of
// performing the conversion, since the underlying implementation
// knows how to properly manipulate the sparse storage format.
//
auto A2 = make_tensor<float>({4, 8});
(A2 = sparse2dense(Acoo)).run(exec);
print(A2);
//
// Perform a direct SpMM. This is also the correct way of performing
// an efficient sparse operation.
//
auto B = make_tensor<float, 2>({8, 4});
auto C = make_tensor<float>({4, 4});
B.SetVals({
{ 0, 1, 2, 3}, { 4, 5, 6, 7}, { 8, 9, 10, 11}, {12, 13, 14, 15},
{16, 17, 18, 19}, {20, 21, 22, 23}, {24, 25, 26, 27}, {28, 29, 30, 31} });
(C = matmul(Acoo, B)).run(exec);
print(C);
//
// Creates a CSR matrix which is used to solve the following
// system of equations AX=Y, where X is the unknown.
//
// | 1 2 0 0 | | 1 5 | | 5 17 |
// | 0 3 0 0 | x | 2 6 | = | 6 18 |
// | 0 0 4 0 | | 3 7 | | 12 28 |
// | 0 0 0 5 | | 4 8 | | 20 40 |
//
auto coeffs = make_tensor<float>({5});
auto rowptr = make_tensor<int>({5});
auto colidx = make_tensor<int>({5});
coeffs.SetVals({1, 2, 3, 4, 5});
rowptr.SetVals({0, 2, 3, 4, 5});
colidx.SetVals({0, 1, 1, 2, 3});
auto Acsr = experimental::make_tensor_csr(coeffs, rowptr, colidx, {4, 4});
print(Acsr);
auto X = make_tensor<float>({4, 2});
auto Y = make_tensor<float>({4, 2});
Y.SetVals({ {5, 17}, {6, 18}, {12, 28}, {20, 40} });
(X = solve(Acsr, Y)).run(exec);
print(X);
//
// A direct dense2sparse conversion. This is the correct way of
// performing an efficient sparse operation. Note, however,
// that assigning a right-hand-side value to a sparse tensor
// (viz. the lval Acoo) is an experimental operation recently
// added to MatX, and it is currently restricted to a direct
// "dense2sparse" operation at the right-hand-side.
//
auto D = make_tensor<float, 2>({4, 8});
D.SetVals({
{0, 11, 0, 12, 0, 0, 0, 0},
{0, 0, 13, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 14},
{0, 15, 0, 0, 16, 0, 17, 0}});
(Acoo = dense2sparse(D)).run(exec);
print(Acoo);
//
// Conversions between sparse formats: COO to CSR.
// For speed-of-operation, the CSC output actually
// shares some of the buffers with COO on completion.
//
auto Acsr2 = experimental::make_zero_tensor_csr<float, int, int>({4, 8});
(Acsr2 = sparse2sparse(Acoo)).run(exec);
print(Acsr2);
MATX_EXIT_HANDLER();
}