-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathfft_conv.cu
175 lines (155 loc) · 6.81 KB
/
fft_conv.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
////////////////////////////////////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (c) 2021, NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////////
#include "matx.h"
#include <cassert>
#include <cstdio>
#include <cuda/std/ccomplex>
using namespace matx;
/**
* FFT Convolution
*
* This example shows how to perform an FFT convolution using the MatX library.
* The example shows the convolution theorem of:
*
* \f(h*x \leftrightarrow H \cdot X$ \f)
*
* Namely, a convolution in the time domain is a point-wise multiplication in
* the frequency domain. In this example we start with two signals in the time
* domain, convert them to frequency domain, perform the multiply, then convert
* them back to the time domain. This should give very close results to
* performing a direct convolution in the time domain, so the results are
* compared to a direct convolution. They will not match identically since the
* types and order of operations are different, but they will match within a
* close margin.
*
* FFT convolution is frequently used in signal processing when a signal or
* filter is larger than a threshold, since it will outperform direct
* convolution past this threshold. Another benefit of FFT convolution is the
* number of operations is the same, regardless of the filter size. This allows
* a user to FFT a very long filter one time, and that buffer can be used many
* times for any incoming samples.
*
* For smaller signal sizes, the FFT convolution typically performs worse since
* there is some buffer and 3 FFT operations (2 for FFT of signal and filter,
* and 1 IFFT after the multiply) that causes the setup time to dominate.
*
* Note that the conv1d() operator has a mode to perform FFT-based convolution
* automatically.
*
*/
int main([[maybe_unused]] int argc, [[maybe_unused]] char **argv)
{
MATX_ENTER_HANDLER();
using complex = cuda::std::complex<float>;
index_t signal_size = 1ULL << 16;
index_t filter_size = 16;
index_t batches = 8;
index_t filtered_size = signal_size + filter_size - 1;
float separate_ms;
float fused_ms;
constexpr int iterations = 100;
cudaStream_t stream;
cudaStreamCreate(&stream);
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaExecutor exec{stream};
// Create time domain buffers
auto sig_time = make_tensor<complex>({batches, signal_size});
auto filt_time = make_tensor<complex>({batches, filter_size});
auto time_out = make_tensor<complex>({batches, filtered_size});
// Frequency domain buffers
auto sig_freq = make_tensor<complex>({batches, filtered_size});
auto filt_freq = make_tensor<complex>({batches, filtered_size});
for (index_t b = 0; b < batches; b++) {
// Fill the time domain signals with data
for (index_t i = 0; i < signal_size; i++) {
sig_time(b,i) = {-1.0f * (2.0f * static_cast<float>(i % 2) + 1.0f) *
(static_cast<float>(i % 10) / 10.0f) +
0.1f,
-1.0f * (static_cast<float>(i % 2) == 0.0f) *
(static_cast<float>(i % 10) / 5.0f) -
0.1f};
}
for (index_t i = 0; i < filter_size; i++) {
filt_time(b,i) = {static_cast<float>(i) / static_cast<float>(filter_size),
static_cast<float>(-i) / static_cast<float>(filter_size) +
0.5f};
}
}
// Perform the FFT in-place on both signal and filter
for (int i = 0; i < iterations; i++) {
if (i == 1) {
cudaEventRecord(start, stream);
}
(sig_freq = fft(sig_time, filtered_size)).run(exec);
(filt_freq = fft(filt_time, filtered_size)).run(exec);
(sig_freq = sig_freq * filt_freq).run(exec);
// IFFT in-place
(sig_freq = ifft(sig_freq)).run(exec);
}
cudaEventRecord(stop, stream);
exec.sync();
cudaEventElapsedTime(&separate_ms, start, stop);
for (int i = 0; i < iterations; i++) {
if (i == 1) {
cudaEventRecord(start, stream);
}
(sig_freq = ifft(fft(sig_time, filtered_size) * fft(filt_time, filtered_size))).run(exec);
}
cudaEventRecord(stop, stream);
exec.sync();
cudaEventElapsedTime(&fused_ms, start, stop);
printf("FFT runtimes for separate = %.2f ms, fused = %.2f ms\n", separate_ms/(iterations-1), fused_ms/(iterations-1));
// Now the sig_freq view contains the full convolution result. Verify against
// a direct convolution. The conv1d function only accepts a 1D filter, so we
// create a sliced view here.
auto filt1 = slice<1>(filt_time, {0,0}, {matxDropDim, matxEnd});
(time_out = conv1d(sig_time, filt1, matxConvCorrMode_t::MATX_C_MODE_FULL)).run(exec);
exec.sync();
// Compare signals
for (index_t b = 0; b < batches; b++) {
for (index_t i = 0; i < filtered_size; i++) {
if (fabs(time_out(b,i).real() - sig_freq(b,i).real()) > 0.001 ||
fabs(time_out(b,i).imag() - sig_freq(b,i).imag()) > 0.001) {
std::cout <<
"Verification failed at item " << i << ". Direct=" << time_out(b,i).real() << " " << time_out(b,i).imag() << ", FFT=" <<
sig_freq(b,i).real() << " " <<
sig_freq(b,i).imag() << "\n";
return -1;
}
}
}
std::cout << "Verification successful" << std::endl;
MATX_CUDA_CHECK_LAST_ERROR();
MATX_EXIT_HANDLER();
}